L(s) = 1 | + (0.273 − 0.961i)2-s + (0.995 + 0.0922i)3-s + (−0.850 − 0.526i)4-s + (−0.673 + 0.739i)5-s + (0.361 − 0.932i)6-s + (−0.183 + 0.982i)7-s + (−0.739 + 0.673i)8-s + (0.982 + 0.183i)9-s + (0.526 + 0.850i)10-s + (−0.526 + 0.850i)11-s + (−0.798 − 0.602i)12-s + (0.739 − 0.673i)13-s + (0.895 + 0.445i)14-s + (−0.739 + 0.673i)15-s + (0.445 + 0.895i)16-s + ⋯ |
L(s) = 1 | + (0.273 − 0.961i)2-s + (0.995 + 0.0922i)3-s + (−0.850 − 0.526i)4-s + (−0.673 + 0.739i)5-s + (0.361 − 0.932i)6-s + (−0.183 + 0.982i)7-s + (−0.739 + 0.673i)8-s + (0.982 + 0.183i)9-s + (0.526 + 0.850i)10-s + (−0.526 + 0.850i)11-s + (−0.798 − 0.602i)12-s + (0.739 − 0.673i)13-s + (0.895 + 0.445i)14-s + (−0.739 + 0.673i)15-s + (0.445 + 0.895i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.509395648 + 0.1192047629i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.509395648 + 0.1192047629i\) |
\(L(1)\) |
\(\approx\) |
\(1.307627653 - 0.1720137102i\) |
\(L(1)\) |
\(\approx\) |
\(1.307627653 - 0.1720137102i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 + (0.273 - 0.961i)T \) |
| 3 | \( 1 + (0.995 + 0.0922i)T \) |
| 5 | \( 1 + (-0.673 + 0.739i)T \) |
| 7 | \( 1 + (-0.183 + 0.982i)T \) |
| 11 | \( 1 + (-0.526 + 0.850i)T \) |
| 13 | \( 1 + (0.739 - 0.673i)T \) |
| 19 | \( 1 + (0.273 + 0.961i)T \) |
| 23 | \( 1 + (-0.183 + 0.982i)T \) |
| 29 | \( 1 + (0.526 - 0.850i)T \) |
| 31 | \( 1 + (0.673 + 0.739i)T \) |
| 37 | \( 1 + (0.798 - 0.602i)T \) |
| 41 | \( 1 + (-0.995 - 0.0922i)T \) |
| 43 | \( 1 + (-0.445 + 0.895i)T \) |
| 47 | \( 1 + (-0.982 + 0.183i)T \) |
| 53 | \( 1 + (0.982 + 0.183i)T \) |
| 59 | \( 1 + (-0.932 + 0.361i)T \) |
| 61 | \( 1 + (0.361 - 0.932i)T \) |
| 67 | \( 1 + (-0.273 - 0.961i)T \) |
| 71 | \( 1 + (0.183 - 0.982i)T \) |
| 73 | \( 1 + (-0.895 + 0.445i)T \) |
| 79 | \( 1 + (-0.961 + 0.273i)T \) |
| 83 | \( 1 + (-0.0922 - 0.995i)T \) |
| 89 | \( 1 + (0.739 + 0.673i)T \) |
| 97 | \( 1 + (0.183 - 0.982i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.50794292836883447561826885006, −24.36178302763150614589751844180, −23.92143527796844114588285472569, −23.24292558628371716279289735560, −21.87056956451179667770369836635, −20.89501172134557155945973938486, −20.122405119261560940187361369714, −19.09200819062694337530020860577, −18.26069071027399228236180140208, −16.83190697056653050197093286274, −16.18686028894481382987251822690, −15.48252566766975976569538537386, −14.35111632185704845945648668123, −13.42115831704195758889400221774, −13.09565554107433117478333407044, −11.660123846063695200585711836327, −10.138434622987711170360039592200, −8.83383764765054701411815361885, −8.371199553610708537422387392228, −7.38563402457848661132588498938, −6.487281481874303538361922266418, −4.83902337011953037008970942767, −4.038135884402618268842182384729, −3.107705039186638930942987902901, −0.890536813160784779827596542642,
1.77992179138706837787921114038, 2.87483122800175802489025065393, 3.51308673081233174572975414642, 4.72712024382070375279409425184, 6.1123820510406035837905920061, 7.73360917351088006244572957884, 8.47709617055981769772559056397, 9.71657042582919567023670757642, 10.356235767527612134921345692008, 11.61167722683932450321553086545, 12.47206574875181299079931773752, 13.38486156095074350173065558544, 14.43694569856981363132575688050, 15.25952004600916257147262185326, 15.771529906378368141771131232638, 18.02193938796939468792029466020, 18.424777018875530078699610626467, 19.36657954705659171337007763234, 20.01970175366355900348029897439, 21.004562340717270951657962162315, 21.68635117880675220221811260907, 22.81624748409085830365684484886, 23.32908493011252070485752636592, 24.74983618528837176160316976665, 25.6246895854936078335278137699