| L(s) = 1 | + (−0.602 − 0.798i)2-s + (−0.739 + 0.673i)3-s + (−0.273 + 0.961i)4-s + (−0.932 − 0.361i)5-s + (0.982 + 0.183i)6-s + (−0.0922 + 0.995i)7-s + (0.932 − 0.361i)8-s + (0.0922 − 0.995i)9-s + (0.273 + 0.961i)10-s + (0.273 − 0.961i)11-s + (−0.445 − 0.895i)12-s + (0.932 − 0.361i)13-s + (0.850 − 0.526i)14-s + (0.932 − 0.361i)15-s + (−0.850 − 0.526i)16-s + ⋯ |
| L(s) = 1 | + (−0.602 − 0.798i)2-s + (−0.739 + 0.673i)3-s + (−0.273 + 0.961i)4-s + (−0.932 − 0.361i)5-s + (0.982 + 0.183i)6-s + (−0.0922 + 0.995i)7-s + (0.932 − 0.361i)8-s + (0.0922 − 0.995i)9-s + (0.273 + 0.961i)10-s + (0.273 − 0.961i)11-s + (−0.445 − 0.895i)12-s + (0.932 − 0.361i)13-s + (0.850 − 0.526i)14-s + (0.932 − 0.361i)15-s + (−0.850 − 0.526i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0597 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0597 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2574550349 + 0.2425047592i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2574550349 + 0.2425047592i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4813149889 + 0.01266897952i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4813149889 + 0.01266897952i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.602 - 0.798i)T \) |
| 3 | \( 1 + (-0.739 + 0.673i)T \) |
| 5 | \( 1 + (-0.932 - 0.361i)T \) |
| 7 | \( 1 + (-0.0922 + 0.995i)T \) |
| 11 | \( 1 + (0.273 - 0.961i)T \) |
| 13 | \( 1 + (0.932 - 0.361i)T \) |
| 19 | \( 1 + (-0.602 + 0.798i)T \) |
| 23 | \( 1 + (-0.0922 + 0.995i)T \) |
| 29 | \( 1 + (0.273 - 0.961i)T \) |
| 31 | \( 1 + (-0.932 + 0.361i)T \) |
| 37 | \( 1 + (-0.445 + 0.895i)T \) |
| 41 | \( 1 + (-0.739 + 0.673i)T \) |
| 43 | \( 1 + (-0.850 + 0.526i)T \) |
| 47 | \( 1 + (0.0922 + 0.995i)T \) |
| 53 | \( 1 + (0.0922 - 0.995i)T \) |
| 59 | \( 1 + (-0.982 + 0.183i)T \) |
| 61 | \( 1 + (0.982 + 0.183i)T \) |
| 67 | \( 1 + (-0.602 + 0.798i)T \) |
| 71 | \( 1 + (-0.0922 + 0.995i)T \) |
| 73 | \( 1 + (0.850 + 0.526i)T \) |
| 79 | \( 1 + (0.602 - 0.798i)T \) |
| 83 | \( 1 + (0.739 + 0.673i)T \) |
| 89 | \( 1 + (0.932 + 0.361i)T \) |
| 97 | \( 1 + (-0.0922 + 0.995i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.38175830060689547302169177211, −24.14260272634916060845949843408, −23.52504715988229446269920863683, −23.06839961519895662994778105696, −22.20722358703545826873545462077, −20.27429488286970333277835933143, −19.647665958955957413082204301434, −18.65268661560000231391085198419, −18.005224367497341505859716516896, −16.98295239929493130510878448755, −16.35795712703342548799842523556, −15.36510699720081849164257556695, −14.3151362846885256475859472413, −13.31710813870924508684979764449, −12.164619215903682682046727186399, −10.88399388809692061307795694834, −10.5366348888072057315492335082, −8.909354213933609706468846104274, −7.81311711971681122298298541484, −6.93280945100959352772647154158, −6.57473848368102926567975845122, −4.9722251830709503800887079900, −4.002465032337985181063833825961, −1.78399362334393792982617867375, −0.36385084750190179424017018951,
1.26839893814552988330527426794, 3.22688873198469764625526829443, 3.8977511445901123207483150745, 5.214034150728978384067570965947, 6.37995867950692249161468963747, 8.10973089937319421836651780814, 8.72641085962632312608712318597, 9.74590931434059562569164746088, 10.93850919732411199024053859834, 11.56200576639365631108866762177, 12.232337992503280224945268910634, 13.270619493633625474479500368738, 14.99987202832140630060882004136, 15.97636302911017404192461020388, 16.4792917325950967269593541736, 17.5805347814739729347241303453, 18.60205595610409463860273300575, 19.23653379917376487037670829964, 20.392087569622772598503270866004, 21.21325040962800716773339298277, 21.90818513466325743504028591329, 22.82976984125369504592068568834, 23.663975220045239727254021933913, 24.967292323130877252254554286309, 25.982187588528094378972635004605