| L(s) = 1 | + (−0.850 − 0.526i)2-s + (0.982 + 0.183i)3-s + (0.445 + 0.895i)4-s + (−0.0922 − 0.995i)5-s + (−0.739 − 0.673i)6-s + (−0.932 − 0.361i)7-s + (0.0922 − 0.995i)8-s + (0.932 + 0.361i)9-s + (−0.445 + 0.895i)10-s + (−0.445 − 0.895i)11-s + (0.273 + 0.961i)12-s + (0.0922 − 0.995i)13-s + (0.602 + 0.798i)14-s + (0.0922 − 0.995i)15-s + (−0.602 + 0.798i)16-s + ⋯ |
| L(s) = 1 | + (−0.850 − 0.526i)2-s + (0.982 + 0.183i)3-s + (0.445 + 0.895i)4-s + (−0.0922 − 0.995i)5-s + (−0.739 − 0.673i)6-s + (−0.932 − 0.361i)7-s + (0.0922 − 0.995i)8-s + (0.932 + 0.361i)9-s + (−0.445 + 0.895i)10-s + (−0.445 − 0.895i)11-s + (0.273 + 0.961i)12-s + (0.0922 − 0.995i)13-s + (0.602 + 0.798i)14-s + (0.0922 − 0.995i)15-s + (−0.602 + 0.798i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.645 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.645 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3472145445 - 0.7475486166i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3472145445 - 0.7475486166i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7053251066 - 0.4106812875i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7053251066 - 0.4106812875i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.850 - 0.526i)T \) |
| 3 | \( 1 + (0.982 + 0.183i)T \) |
| 5 | \( 1 + (-0.0922 - 0.995i)T \) |
| 7 | \( 1 + (-0.932 - 0.361i)T \) |
| 11 | \( 1 + (-0.445 - 0.895i)T \) |
| 13 | \( 1 + (0.0922 - 0.995i)T \) |
| 19 | \( 1 + (-0.850 + 0.526i)T \) |
| 23 | \( 1 + (-0.932 - 0.361i)T \) |
| 29 | \( 1 + (-0.445 - 0.895i)T \) |
| 31 | \( 1 + (-0.0922 + 0.995i)T \) |
| 37 | \( 1 + (0.273 - 0.961i)T \) |
| 41 | \( 1 + (0.982 + 0.183i)T \) |
| 43 | \( 1 + (-0.602 - 0.798i)T \) |
| 47 | \( 1 + (0.932 - 0.361i)T \) |
| 53 | \( 1 + (0.932 + 0.361i)T \) |
| 59 | \( 1 + (0.739 - 0.673i)T \) |
| 61 | \( 1 + (-0.739 - 0.673i)T \) |
| 67 | \( 1 + (-0.850 + 0.526i)T \) |
| 71 | \( 1 + (-0.932 - 0.361i)T \) |
| 73 | \( 1 + (0.602 - 0.798i)T \) |
| 79 | \( 1 + (0.850 - 0.526i)T \) |
| 83 | \( 1 + (-0.982 + 0.183i)T \) |
| 89 | \( 1 + (0.0922 + 0.995i)T \) |
| 97 | \( 1 + (-0.932 - 0.361i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.92133583576762393099648038513, −25.47177453148400507884681706043, −24.166670166614143486962095454061, −23.42715528050030001496367220294, −22.28383936684022273719066939413, −21.15832799779020791360219805476, −19.94719021124574586798506695387, −19.3481307478932718596095632415, −18.56297307843497328884705860361, −17.98892454254179880490230617614, −16.575005714279506958663569093057, −15.52447443090082170497103265064, −15.023050051033845560487092734305, −14.10728375759175866426382075184, −13.03756116583234944413386917522, −11.68401113628719746689057812889, −10.35610775889896485767844438705, −9.65774918735420880598693101554, −8.82779302940035227543875580268, −7.60000903270683257255297927421, −6.92733309615603753596855220805, −6.08132138811072864658527822185, −4.19726615119298849306011669950, −2.72988039784193597872531608046, −1.96267614277946439464226285699,
0.610507063883627508990705490296, 2.15758877483145508272599010999, 3.33806755546060206602906680441, 4.1408595945356062918172999517, 5.941022755826058500901652116220, 7.49841711879958295274794828046, 8.295034973739954373372742966186, 8.98533000295126557207819688618, 10.00597419286178584510457156259, 10.68328605859697339781944551333, 12.3192222547379052011685984635, 12.967219658538449271136256164, 13.7420303508843021385216210233, 15.4066317473591733851417406730, 16.1578108029989032652327007564, 16.78160832581683782804515288231, 18.08066444519827942967794378826, 19.15783740740587125036519848507, 19.70538095774527043168969495727, 20.48819347481812852670805036942, 21.15419028139021196317190550138, 22.10775743193894275123288409424, 23.51780850234988306490177856604, 24.76957960280359456076925472701, 25.24690951123383507495726990924