| L(s) = 1 | + (0.0855 − 0.996i)2-s + (−0.985 − 0.170i)4-s + (0.959 − 0.281i)7-s + (−0.254 + 0.967i)8-s + (−0.974 − 0.226i)11-s + (−0.610 − 0.791i)13-s + (−0.198 − 0.980i)14-s + (0.941 + 0.336i)16-s + (−0.985 + 0.170i)17-s + (0.897 − 0.441i)19-s + (−0.309 + 0.951i)22-s + (−0.841 + 0.540i)26-s + (−0.993 + 0.113i)28-s + (−0.897 − 0.441i)29-s + (−0.254 + 0.967i)31-s + (0.415 − 0.909i)32-s + ⋯ |
| L(s) = 1 | + (0.0855 − 0.996i)2-s + (−0.985 − 0.170i)4-s + (0.959 − 0.281i)7-s + (−0.254 + 0.967i)8-s + (−0.974 − 0.226i)11-s + (−0.610 − 0.791i)13-s + (−0.198 − 0.980i)14-s + (0.941 + 0.336i)16-s + (−0.985 + 0.170i)17-s + (0.897 − 0.441i)19-s + (−0.309 + 0.951i)22-s + (−0.841 + 0.540i)26-s + (−0.993 + 0.113i)28-s + (−0.897 − 0.441i)29-s + (−0.254 + 0.967i)31-s + (0.415 − 0.909i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.992 + 0.123i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.992 + 0.123i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8566148794 + 0.05294278382i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8566148794 + 0.05294278382i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7581868025 - 0.4576346010i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7581868025 - 0.4576346010i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (0.0855 - 0.996i)T \) |
| 7 | \( 1 + (0.959 - 0.281i)T \) |
| 11 | \( 1 + (-0.974 - 0.226i)T \) |
| 13 | \( 1 + (-0.610 - 0.791i)T \) |
| 17 | \( 1 + (-0.985 + 0.170i)T \) |
| 19 | \( 1 + (0.897 - 0.441i)T \) |
| 29 | \( 1 + (-0.897 - 0.441i)T \) |
| 31 | \( 1 + (-0.254 + 0.967i)T \) |
| 37 | \( 1 + (0.870 - 0.491i)T \) |
| 41 | \( 1 + (-0.198 + 0.980i)T \) |
| 43 | \( 1 + (-0.841 + 0.540i)T \) |
| 47 | \( 1 + (0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.0285 + 0.999i)T \) |
| 59 | \( 1 + (-0.610 - 0.791i)T \) |
| 61 | \( 1 + (-0.998 + 0.0570i)T \) |
| 67 | \( 1 + (0.921 + 0.389i)T \) |
| 71 | \( 1 + (-0.516 - 0.856i)T \) |
| 73 | \( 1 + (-0.696 - 0.717i)T \) |
| 79 | \( 1 + (-0.564 + 0.825i)T \) |
| 83 | \( 1 + (0.993 + 0.113i)T \) |
| 89 | \( 1 + (0.362 - 0.931i)T \) |
| 97 | \( 1 + (-0.993 + 0.113i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.276852059715673547893463390842, −19.00538589234337442805395990373, −18.40024887455809908708023938992, −17.88014815609388078385533932784, −17.07189107924681402483849568118, −16.40009150423910420833985661614, −15.52738483673526286357832527189, −15.01168973737567820462779910158, −14.25519216967077971012792227474, −13.57728982759896750918597011008, −12.80464312517540777228311466989, −11.89566757045220112807266661311, −11.12716525756161621335789951230, −10.055347304041700558703427112878, −9.26841558084113407720585360009, −8.55130985121583177008328659550, −7.6245393299617151432974018087, −7.27542251938915818772616880350, −6.14686234918708524155221167652, −5.28749720021709370008569757462, −4.75134610583057794070359221480, −3.91681986467911196410697924841, −2.62110864964849980710341874916, −1.63203235465143130027498893880, −0.197547957511612048310256914102,
0.73693280416269256348036014533, 1.79438125722187754582696572430, 2.631928697952840874473114944328, 3.433904883956130643159405491492, 4.6103821988231725485200666091, 5.03296092134849564118333013151, 5.90320291005156368836201667675, 7.374921616886595751372659972627, 7.97721874782958284911338405343, 8.788547279081030820080451064174, 9.68965623630335488485105010103, 10.50278373931607412618805791815, 11.072631001315168133728725401059, 11.70358671407638749142330026096, 12.673668833195499251640896478072, 13.311834771989755886273636618, 13.93291716317002122820391756799, 14.87459060986585812131865746752, 15.41827242027272565433710374486, 16.61602403132012366660916114752, 17.49921866942006820474213748541, 18.07565296412623401904903334102, 18.5053199588216378887843799582, 19.71072775449337690305561419803, 20.12931906583591352272483050081