| L(s) = 1 | + (−0.680 − 0.733i)3-s + (−0.866 − 0.5i)7-s + (−0.0747 + 0.997i)9-s + (0.900 − 0.433i)11-s + (0.930 − 0.365i)13-s + (0.149 + 0.988i)17-s + (−0.0747 − 0.997i)19-s + (0.222 + 0.974i)21-s + (−0.563 + 0.826i)23-s + (0.781 − 0.623i)27-s + (0.733 + 0.680i)29-s + (0.955 − 0.294i)31-s + (−0.930 − 0.365i)33-s + (−0.866 + 0.5i)37-s + (−0.900 − 0.433i)39-s + ⋯ |
| L(s) = 1 | + (−0.680 − 0.733i)3-s + (−0.866 − 0.5i)7-s + (−0.0747 + 0.997i)9-s + (0.900 − 0.433i)11-s + (0.930 − 0.365i)13-s + (0.149 + 0.988i)17-s + (−0.0747 − 0.997i)19-s + (0.222 + 0.974i)21-s + (−0.563 + 0.826i)23-s + (0.781 − 0.623i)27-s + (0.733 + 0.680i)29-s + (0.955 − 0.294i)31-s + (−0.930 − 0.365i)33-s + (−0.866 + 0.5i)37-s + (−0.900 − 0.433i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1720 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.958 - 0.283i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1720 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.958 - 0.283i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.114472621 - 0.1612768770i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.114472621 - 0.1612768770i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8438824125 - 0.1756362882i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8438824125 - 0.1756362882i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
| good | 3 | \( 1 + (-0.680 - 0.733i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.900 - 0.433i)T \) |
| 13 | \( 1 + (0.930 - 0.365i)T \) |
| 17 | \( 1 + (0.149 + 0.988i)T \) |
| 19 | \( 1 + (-0.0747 - 0.997i)T \) |
| 23 | \( 1 + (-0.563 + 0.826i)T \) |
| 29 | \( 1 + (0.733 + 0.680i)T \) |
| 31 | \( 1 + (0.955 - 0.294i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.222 + 0.974i)T \) |
| 47 | \( 1 + (-0.433 + 0.900i)T \) |
| 53 | \( 1 + (-0.930 - 0.365i)T \) |
| 59 | \( 1 + (0.623 + 0.781i)T \) |
| 61 | \( 1 + (0.955 + 0.294i)T \) |
| 67 | \( 1 + (-0.997 + 0.0747i)T \) |
| 71 | \( 1 + (-0.826 + 0.563i)T \) |
| 73 | \( 1 + (0.930 - 0.365i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.680 + 0.733i)T \) |
| 89 | \( 1 + (-0.733 + 0.680i)T \) |
| 97 | \( 1 + (0.433 + 0.900i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.61448829803216700559335850679, −19.56720720015782524084164962998, −18.79240095494924118832626061001, −18.09760170704760135670614696985, −17.28122606984454499633129402137, −16.48165714396491869015592871767, −15.976707611051390268787249168836, −15.40730710859762948455131031356, −14.393777281744634410977656197829, −13.7747688676859287419733701222, −12.52093812487794079900169575645, −12.05473553670671047592644498486, −11.43363372039129468302024267445, −10.3324020156172426794955984721, −9.85450824262326353382098447459, −9.06430430222283196677831013652, −8.383617615578475725479346480154, −6.92489597795941868502245084756, −6.378281403569180417691361015400, −5.71941465878362922081999653182, −4.703850435952077869188706210526, −3.889986654761536679834726864110, −3.2106134144035641905480214794, −1.9431523709796673860032158441, −0.623850673231914748019398380675,
0.862545788604389094211766703695, 1.53625596938951183913149700720, 2.92389589373332417439214185905, 3.722235501969863822378421509575, 4.71677347639297202739556808063, 5.88299490347983508685479740471, 6.3707070993416799955653553159, 6.9641100530528136253081643939, 8.01442146236177639323973446399, 8.709129152209152835725921579051, 9.79200654710871420206655879677, 10.58063629739228163607509045872, 11.28245554956612535061056059785, 12.02064650641162977628330956200, 12.85195134736464766509026979751, 13.47177407021083307099300381167, 13.9843380121872840514360856202, 15.17824225215956495588750173235, 16.077009209415871495692116261403, 16.56141431103346335111209302481, 17.52826714673120681333199668668, 17.77112752342084923750025410701, 19.01897421325040282863564248016, 19.37319226308712652062624596119, 19.969648073236202823813330588367