L(s) = 1 | + (−0.891 − 0.453i)3-s + (0.707 + 0.707i)7-s + (0.587 + 0.809i)9-s + (0.987 − 0.156i)11-s + (−0.587 − 0.809i)13-s + (−0.951 − 0.309i)19-s + (−0.309 − 0.951i)21-s + (−0.156 − 0.987i)23-s + (−0.156 − 0.987i)27-s + (−0.453 + 0.891i)29-s + (−0.891 + 0.453i)31-s + (−0.951 − 0.309i)33-s + (0.156 − 0.987i)37-s + (0.156 + 0.987i)39-s + (0.156 − 0.987i)41-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)3-s + (0.707 + 0.707i)7-s + (0.587 + 0.809i)9-s + (0.987 − 0.156i)11-s + (−0.587 − 0.809i)13-s + (−0.951 − 0.309i)19-s + (−0.309 − 0.951i)21-s + (−0.156 − 0.987i)23-s + (−0.156 − 0.987i)27-s + (−0.453 + 0.891i)29-s + (−0.891 + 0.453i)31-s + (−0.951 − 0.309i)33-s + (0.156 − 0.987i)37-s + (0.156 + 0.987i)39-s + (0.156 − 0.987i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3968200399 - 0.6595588153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3968200399 - 0.6595588153i\) |
\(L(1)\) |
\(\approx\) |
\(0.7678387066 - 0.1725274768i\) |
\(L(1)\) |
\(\approx\) |
\(0.7678387066 - 0.1725274768i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.891 - 0.453i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (0.987 - 0.156i)T \) |
| 13 | \( 1 + (-0.587 - 0.809i)T \) |
| 19 | \( 1 + (-0.951 - 0.309i)T \) |
| 23 | \( 1 + (-0.156 - 0.987i)T \) |
| 29 | \( 1 + (-0.453 + 0.891i)T \) |
| 31 | \( 1 + (-0.891 + 0.453i)T \) |
| 37 | \( 1 + (0.156 - 0.987i)T \) |
| 41 | \( 1 + (0.156 - 0.987i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.951 + 0.309i)T \) |
| 53 | \( 1 + (-0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.587 - 0.809i)T \) |
| 61 | \( 1 + (0.987 - 0.156i)T \) |
| 67 | \( 1 + (-0.951 - 0.309i)T \) |
| 71 | \( 1 + (0.453 - 0.891i)T \) |
| 73 | \( 1 + (0.987 - 0.156i)T \) |
| 79 | \( 1 + (0.891 + 0.453i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (-0.809 - 0.587i)T \) |
| 97 | \( 1 + (0.891 + 0.453i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.67495419334104370142283875617, −19.88727898763877303687079350544, −19.09841649198350112296755383895, −18.16264842677816084439437504684, −17.43294736484820253025519403807, −16.74101846788599185794581308486, −16.60265625152540702215385697312, −15.17367003885686565280850386898, −14.84354793262745106553284580325, −13.92055593047406842101798529581, −13.04997915269221643549625557418, −12.019524563431649850206944726949, −11.50939303787106764217345312792, −10.93790483217846417484774910866, −9.89013999667879972436173763380, −9.4894847502911043229457259352, −8.35501874136874618919085182715, −7.354331795047572637254090126785, −6.663354742571420219100805664120, −5.882891227403662796571396884700, −4.834597932855937840359084980673, −4.25915171072927533246280227865, −3.59917285161269606560629347200, −1.95487843292813939891523663306, −1.198483946429840694182980539073,
0.32899161909022093407510786835, 1.621195001200077381134897959090, 2.2747323560556824262111400605, 3.60014698987574336711134556385, 4.74991344020139023583860508043, 5.26795267971706401755877944337, 6.18582043032820299267421504106, 6.84768746028110960577287090917, 7.77974515274774793164391944301, 8.56990319764471685502655578365, 9.39537525199234548549026099403, 10.569131983243246729271186137459, 11.0277397399041133393124797626, 11.89318198500224397570663253092, 12.50774371537824094782505720879, 13.03935050176391486192142773811, 14.345853628920783631385079852275, 14.725597409056397503334743709, 15.7080072838632631257372968385, 16.5843807099469837959847280553, 17.19073843175903064881593026316, 17.899457995142382783373414124129, 18.4057953881188956276849200122, 19.308073668050781022384692959644, 19.909715668620878326649805472495