| L(s) = 1 | + (−0.951 − 0.309i)2-s + (0.809 + 0.587i)4-s + (0.587 − 0.809i)7-s + (−0.587 − 0.809i)8-s + (−0.951 − 0.309i)13-s + (−0.809 + 0.587i)14-s + (0.309 + 0.951i)16-s + (0.951 − 0.309i)17-s + (0.809 − 0.587i)19-s + i·23-s + (0.809 + 0.587i)26-s + (0.951 − 0.309i)28-s + (−0.809 − 0.587i)29-s + (0.309 − 0.951i)31-s − i·32-s + ⋯ |
| L(s) = 1 | + (−0.951 − 0.309i)2-s + (0.809 + 0.587i)4-s + (0.587 − 0.809i)7-s + (−0.587 − 0.809i)8-s + (−0.951 − 0.309i)13-s + (−0.809 + 0.587i)14-s + (0.309 + 0.951i)16-s + (0.951 − 0.309i)17-s + (0.809 − 0.587i)19-s + i·23-s + (0.809 + 0.587i)26-s + (0.951 − 0.309i)28-s + (−0.809 − 0.587i)29-s + (0.309 − 0.951i)31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6572950371 - 0.3767767666i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6572950371 - 0.3767767666i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7225895055 - 0.2058252334i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7225895055 - 0.2058252334i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + (0.587 - 0.809i)T \) |
| 13 | \( 1 + (-0.951 - 0.309i)T \) |
| 17 | \( 1 + (0.951 - 0.309i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.809 - 0.587i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + (0.951 + 0.309i)T \) |
| 59 | \( 1 + (-0.809 - 0.587i)T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.587 + 0.809i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.951 + 0.309i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.74841901017362112956522880367, −26.9430613899722407034877112403, −26.01424964222805075442001474099, −24.86305377066328704889302174690, −24.433064133771687316442652916570, −23.23311269890300921111224743752, −21.84961648433582956662031236447, −20.88264431810018318094571890158, −19.85109164908332038764219531299, −18.75652676988895919374971739074, −18.14241811290481540682656623280, −16.98315848259080853420352206831, −16.17818727758433385384746053982, −14.899315800907230440149931120784, −14.364821080370077739530091430979, −12.39373776444181304780155433043, −11.60541121597508243444535841390, −10.341110442582031566515285959582, −9.36393499016922268846227767510, −8.2925192572168622746414384257, −7.37589070713610017419883787609, −6.019623497542598110262904697140, −4.962104747863321819774134992742, −2.83560788908913340036104885236, −1.51699886667592899425667240792,
0.954825526218223691676012424817, 2.49776721593212433418487496548, 3.92379793408610552860456432137, 5.551892902279384400209092786820, 7.36019003658813223628237280828, 7.68276757689795614435805482406, 9.26191480727244148995471646509, 10.099397172775631280134588421423, 11.19893917948893972233958860696, 12.06203487607093958299681928852, 13.3942988924412657052351694684, 14.667055486092438742023002028906, 15.83963644933002573120613309860, 17.00694878026926857371874644202, 17.55015046516044298911655030586, 18.689008996175857965431966246029, 19.71642909845033317124485831477, 20.493324248826158140140118356470, 21.38622750554204058728509620084, 22.56510849048898591215400489630, 23.928182868337021639129247760111, 24.72714745042153935903132744119, 25.84010182709027695773162629435, 26.74775159872391979899184431786, 27.43024157293634203398400599873