| L(s)  = 1 | + (0.707 − 0.707i)3-s     + (−0.951 − 0.309i)5-s     + (−0.987 + 0.156i)7-s     − i·9-s     + (−0.891 − 0.453i)11-s     + (0.156 − 0.987i)13-s     + (−0.891 + 0.453i)15-s     + (0.453 − 0.891i)17-s     + (−0.156 − 0.987i)19-s     + (−0.587 + 0.809i)21-s     + (−0.809 + 0.587i)23-s     + (0.809 + 0.587i)25-s     + (−0.707 − 0.707i)27-s     + (0.453 + 0.891i)29-s     + (0.309 + 0.951i)31-s    + ⋯ | 
| L(s)  = 1 | + (0.707 − 0.707i)3-s     + (−0.951 − 0.309i)5-s     + (−0.987 + 0.156i)7-s     − i·9-s     + (−0.891 − 0.453i)11-s     + (0.156 − 0.987i)13-s     + (−0.891 + 0.453i)15-s     + (0.453 − 0.891i)17-s     + (−0.156 − 0.987i)19-s     + (−0.587 + 0.809i)21-s     + (−0.809 + 0.587i)23-s     + (0.809 + 0.587i)25-s     + (−0.707 − 0.707i)27-s     + (0.453 + 0.891i)29-s     + (0.309 + 0.951i)31-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.601 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.601 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(0.3736267070 - 0.7485747549i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.3736267070 - 0.7485747549i\) | 
    
        
      | \(L(1)\) | \(\approx\) | \(0.7973620499 - 0.4351232574i\) | 
    
      | \(L(1)\) | \(\approx\) | \(0.7973620499 - 0.4351232574i\) | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 41 | \( 1 \) | 
| good | 3 | \( 1 + (0.707 - 0.707i)T \) | 
|  | 5 | \( 1 + (-0.951 - 0.309i)T \) | 
|  | 7 | \( 1 + (-0.987 + 0.156i)T \) | 
|  | 11 | \( 1 + (-0.891 - 0.453i)T \) | 
|  | 13 | \( 1 + (0.156 - 0.987i)T \) | 
|  | 17 | \( 1 + (0.453 - 0.891i)T \) | 
|  | 19 | \( 1 + (-0.156 - 0.987i)T \) | 
|  | 23 | \( 1 + (-0.809 + 0.587i)T \) | 
|  | 29 | \( 1 + (0.453 + 0.891i)T \) | 
|  | 31 | \( 1 + (0.309 + 0.951i)T \) | 
|  | 37 | \( 1 + (0.309 - 0.951i)T \) | 
|  | 43 | \( 1 + (0.587 + 0.809i)T \) | 
|  | 47 | \( 1 + (-0.987 - 0.156i)T \) | 
|  | 53 | \( 1 + (-0.453 - 0.891i)T \) | 
|  | 59 | \( 1 + (0.809 - 0.587i)T \) | 
|  | 61 | \( 1 + (0.587 - 0.809i)T \) | 
|  | 67 | \( 1 + (0.891 - 0.453i)T \) | 
|  | 71 | \( 1 + (0.891 + 0.453i)T \) | 
|  | 73 | \( 1 + iT \) | 
|  | 79 | \( 1 + (-0.707 + 0.707i)T \) | 
|  | 83 | \( 1 - T \) | 
|  | 89 | \( 1 + (0.987 - 0.156i)T \) | 
|  | 97 | \( 1 + (0.891 - 0.453i)T \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−27.99191903068710356511855491787, −26.85472682317764229883487379317, −26.161331947011061017425580668782, −25.59126361508528943109263117247, −24.078432125715274814292838631950, −23.10553465992689140806713375017, −22.27435690064585768716775793870, −21.103224858565962085008931498825, −20.242301572325357591463218658889, −19.19421342222321922281620750368, −18.7163719472694186148065306908, −16.78205698139034262104794241325, −16.00889531984771133150604498846, −15.2259455307246478235633313799, −14.242476533280581983955130796845, −13.04977126214555220519941364262, −11.89853302700672961272291905287, −10.479885616215367923160215833549, −9.8432211069904777762181736527, −8.43029652237378053306939624808, −7.599772377495099895442958728183, −6.1903154696886167142918974753, −4.39723089149504165540525961283, −3.65433833315580173855447896643, −2.403580703045412306416982067265, 
0.626361087623804875207223183351, 2.77188155243427776977590123938, 3.50439461787562276723558009822, 5.28546940636194900924333357675, 6.76476459310776566716940196102, 7.77740529878220026149801442081, 8.61942953328539473507805170412, 9.812437669231366308575496189522, 11.297999648041612062476625993010, 12.566030888527793860459231133725, 13.056221875027247250326603185114, 14.277279803078418024140619777047, 15.6915696115721110445214374345, 15.9985100227189849317990074808, 17.78435165647672212665588498392, 18.683983666601514795175393143741, 19.6470673186762518296877688563, 20.1330005190943006208020571762, 21.38015550692513988735693877665, 22.84800961674296840858316101423, 23.52126242302321338079017638496, 24.47992961497297460243108579433, 25.47150113781311244767637601464, 26.25271730454072175595491970551, 27.270406732478636252188858931136
