| L(s) = 1 | + (0.996 − 0.0774i)2-s + (0.0193 − 0.999i)3-s + (0.987 − 0.154i)4-s + (0.396 − 0.918i)5-s + (−0.0581 − 0.998i)6-s + (0.813 + 0.581i)7-s + (0.973 − 0.230i)8-s + (−0.999 − 0.0387i)9-s + (0.323 − 0.946i)10-s + (−0.875 + 0.483i)11-s + (−0.135 − 0.990i)12-s + (−0.686 + 0.727i)13-s + (0.856 + 0.516i)14-s + (−0.910 − 0.413i)15-s + (0.952 − 0.305i)16-s + (−0.286 + 0.957i)17-s + ⋯ |
| L(s) = 1 | + (0.996 − 0.0774i)2-s + (0.0193 − 0.999i)3-s + (0.987 − 0.154i)4-s + (0.396 − 0.918i)5-s + (−0.0581 − 0.998i)6-s + (0.813 + 0.581i)7-s + (0.973 − 0.230i)8-s + (−0.999 − 0.0387i)9-s + (0.323 − 0.946i)10-s + (−0.875 + 0.483i)11-s + (−0.135 − 0.990i)12-s + (−0.686 + 0.727i)13-s + (0.856 + 0.516i)14-s + (−0.910 − 0.413i)15-s + (0.952 − 0.305i)16-s + (−0.286 + 0.957i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 163 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.412 - 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 163 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.412 - 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.790490073 - 1.155152533i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.790490073 - 1.155152533i\) |
| \(L(1)\) |
\(\approx\) |
\(1.745416504 - 0.7263594451i\) |
| \(L(1)\) |
\(\approx\) |
\(1.745416504 - 0.7263594451i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 163 | \( 1 \) |
| good | 2 | \( 1 + (0.996 - 0.0774i)T \) |
| 3 | \( 1 + (0.0193 - 0.999i)T \) |
| 5 | \( 1 + (0.396 - 0.918i)T \) |
| 7 | \( 1 + (0.813 + 0.581i)T \) |
| 11 | \( 1 + (-0.875 + 0.483i)T \) |
| 13 | \( 1 + (-0.686 + 0.727i)T \) |
| 17 | \( 1 + (-0.286 + 0.957i)T \) |
| 19 | \( 1 + (-0.963 + 0.268i)T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (-0.431 - 0.902i)T \) |
| 31 | \( 1 + (0.597 + 0.802i)T \) |
| 37 | \( 1 + (-0.835 - 0.549i)T \) |
| 41 | \( 1 + (0.987 + 0.154i)T \) |
| 43 | \( 1 + (-0.981 - 0.192i)T \) |
| 47 | \( 1 + (-0.565 - 0.824i)T \) |
| 53 | \( 1 + (0.173 + 0.984i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.973 + 0.230i)T \) |
| 67 | \( 1 + (-0.360 - 0.932i)T \) |
| 71 | \( 1 + (0.657 - 0.753i)T \) |
| 73 | \( 1 + (-0.360 + 0.932i)T \) |
| 79 | \( 1 + (0.466 - 0.884i)T \) |
| 83 | \( 1 + (0.0968 - 0.995i)T \) |
| 89 | \( 1 + (-0.875 - 0.483i)T \) |
| 97 | \( 1 + (0.533 + 0.845i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.77549763569177269150152419207, −26.788454809917860207016548801134, −26.02511689465908783152721450478, −25.01778114260967297636208431644, −23.79019300030578596211874254308, −22.85516839249067082613151348856, −22.093595057214761432962759221619, −21.17482928532419117383778945318, −20.61534828432503218787983168482, −19.38766698387626989424621356262, −17.76589717278427244657662953893, −16.86811807185447809994590170751, −15.60100692932307498335701559460, −14.89026177960830289945125167270, −14.08897325151027322300645595130, −13.1413667308536363723580191051, −11.36019221578774480980860723714, −10.868972019027038399109998686217, −9.92766484757736577517331684467, −8.09209573197297952137339662064, −6.95210740330704103436163254665, −5.50123981932042100156021580201, −4.76378809193096941548820098504, −3.3638357163755212794120678127, −2.4445151282043407278024921007,
1.72674823216000576641945932964, 2.38372934449760732581283308643, 4.4892550564209238857751359120, 5.38055044629794814285818568396, 6.45569775576119618171150690242, 7.76294891701525243382104159131, 8.75733524053060659826330050259, 10.54798313267110107685334098062, 11.85988446432015285777478511761, 12.55209386783349087353166106911, 13.27585409266910107895901476606, 14.39846859205998481528897753786, 15.26359732681986542040543704156, 16.76378312076001095287539454299, 17.545358253740542018244998095184, 18.88523008436828770373688698955, 19.85146371165311540365196520061, 21.00061168434105290335817307509, 21.469085197168719517840373560995, 22.97647041706286921923069589422, 23.828022925862664471135385862615, 24.51049994548084577302313628290, 25.09557283199392787593623002816, 26.21566955039800709479573747861, 28.219222028006832598066113862649