| L(s) = 1 | + (−0.993 − 0.116i)2-s + (−0.686 + 0.727i)3-s + (0.973 + 0.230i)4-s + (0.173 − 0.984i)5-s + (0.766 − 0.642i)6-s + (0.597 − 0.802i)7-s + (−0.939 − 0.342i)8-s + (−0.0581 − 0.998i)9-s + (−0.286 + 0.957i)10-s + (−0.686 + 0.727i)11-s + (−0.835 + 0.549i)12-s + (−0.939 + 0.342i)13-s + (−0.686 + 0.727i)14-s + (0.597 + 0.802i)15-s + (0.893 + 0.448i)16-s + (−0.939 − 0.342i)17-s + ⋯ |
| L(s) = 1 | + (−0.993 − 0.116i)2-s + (−0.686 + 0.727i)3-s + (0.973 + 0.230i)4-s + (0.173 − 0.984i)5-s + (0.766 − 0.642i)6-s + (0.597 − 0.802i)7-s + (−0.939 − 0.342i)8-s + (−0.0581 − 0.998i)9-s + (−0.286 + 0.957i)10-s + (−0.686 + 0.727i)11-s + (−0.835 + 0.549i)12-s + (−0.939 + 0.342i)13-s + (−0.686 + 0.727i)14-s + (0.597 + 0.802i)15-s + (0.893 + 0.448i)16-s + (−0.939 − 0.342i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 163 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.296 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 163 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.296 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2273057187 - 0.3085637550i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2273057187 - 0.3085637550i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4854872937 - 0.1183068561i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4854872937 - 0.1183068561i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 163 | \( 1 \) |
| good | 2 | \( 1 + (-0.993 - 0.116i)T \) |
| 3 | \( 1 + (-0.686 + 0.727i)T \) |
| 5 | \( 1 + (0.173 - 0.984i)T \) |
| 7 | \( 1 + (0.597 - 0.802i)T \) |
| 11 | \( 1 + (-0.686 + 0.727i)T \) |
| 13 | \( 1 + (-0.939 + 0.342i)T \) |
| 17 | \( 1 + (-0.939 - 0.342i)T \) |
| 19 | \( 1 + (0.396 - 0.918i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.993 + 0.116i)T \) |
| 31 | \( 1 + (0.173 - 0.984i)T \) |
| 37 | \( 1 + (0.766 + 0.642i)T \) |
| 41 | \( 1 + (0.973 - 0.230i)T \) |
| 43 | \( 1 + (-0.286 - 0.957i)T \) |
| 47 | \( 1 + (-0.993 - 0.116i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.973 - 0.230i)T \) |
| 71 | \( 1 + (-0.286 - 0.957i)T \) |
| 73 | \( 1 + (0.973 + 0.230i)T \) |
| 79 | \( 1 + (-0.0581 + 0.998i)T \) |
| 83 | \( 1 + (0.597 - 0.802i)T \) |
| 89 | \( 1 + (-0.686 - 0.727i)T \) |
| 97 | \( 1 + (-0.0581 + 0.998i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.01761113195954584340891466291, −27.077036808468447327330928847435, −26.23366181181060873641402984775, −24.9747960102419284519933508997, −24.47229976107088539337779912764, −23.395037847896787371387390737607, −22.09876315862965587601262912490, −21.33882956208119849003661341010, −19.701963982675657012640052661265, −18.8850213343681990510471842447, −18.04162983781551989453944812150, −17.64911335310765972106900774153, −16.322281314686270796639971975929, −15.2515998095181248056063749225, −14.18851445178701934188866041271, −12.63866442149322113668268526096, −11.45527929497832364892729492598, −10.90523464111568847717625873702, −9.72281265927223951612533102595, −8.14207477271956777579927682039, −7.46834270870958329306463337871, −6.19341713073407880977288711317, −5.451405385100108935680192008369, −2.77711195360060724178736773070, −1.79154614289146166293856717680,
0.451248926230370229843089913531, 2.16819056961533872430147658782, 4.283321975225925962425207680659, 5.15536967349438232094523704644, 6.764469685258156481150032004795, 7.90725070899716776711368669206, 9.24581122803209038907294471214, 9.93857225378627214216326657263, 11.03111485755849015109181165288, 11.912213417645264747114121106552, 13.08212276860131143888930249910, 14.86111658180093717899968329883, 15.88083887614264964590285737464, 16.7818274455006955913617617904, 17.42141318638448473913888298959, 18.18174538790862855876354582625, 19.9730881787222749348241980847, 20.442446378786029281954882124452, 21.27714004435215068031540318961, 22.439474919059657003802714929556, 24.0328892740261415061285737602, 24.2796897048310893254839718649, 25.92898040064532886382859887728, 26.66913359558657592675769116630, 27.49944733901012349277216791121