| L(s) = 1 | + (−0.888 − 0.458i)2-s + (0.786 + 0.618i)3-s + (0.580 + 0.814i)4-s + (−0.723 − 0.690i)5-s + (−0.415 − 0.909i)6-s + (−0.142 − 0.989i)8-s + (0.235 + 0.971i)9-s + (0.327 + 0.945i)10-s + (−0.888 + 0.458i)11-s + (−0.0475 + 0.998i)12-s + (0.654 − 0.755i)13-s + (−0.142 − 0.989i)15-s + (−0.327 + 0.945i)16-s + (0.995 + 0.0950i)17-s + (0.235 − 0.971i)18-s + (0.995 − 0.0950i)19-s + ⋯ |
| L(s) = 1 | + (−0.888 − 0.458i)2-s + (0.786 + 0.618i)3-s + (0.580 + 0.814i)4-s + (−0.723 − 0.690i)5-s + (−0.415 − 0.909i)6-s + (−0.142 − 0.989i)8-s + (0.235 + 0.971i)9-s + (0.327 + 0.945i)10-s + (−0.888 + 0.458i)11-s + (−0.0475 + 0.998i)12-s + (0.654 − 0.755i)13-s + (−0.142 − 0.989i)15-s + (−0.327 + 0.945i)16-s + (0.995 + 0.0950i)17-s + (0.235 − 0.971i)18-s + (0.995 − 0.0950i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.845 + 0.534i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.845 + 0.534i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.264331812 + 0.3664248185i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.264331812 + 0.3664248185i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8873110046 + 0.04035346213i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8873110046 + 0.04035346213i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (-0.888 - 0.458i)T \) |
| 3 | \( 1 + (0.786 + 0.618i)T \) |
| 5 | \( 1 + (-0.723 - 0.690i)T \) |
| 11 | \( 1 + (-0.888 + 0.458i)T \) |
| 13 | \( 1 + (0.654 - 0.755i)T \) |
| 17 | \( 1 + (0.995 + 0.0950i)T \) |
| 19 | \( 1 + (0.995 - 0.0950i)T \) |
| 29 | \( 1 + (0.415 + 0.909i)T \) |
| 31 | \( 1 + (-0.928 - 0.371i)T \) |
| 37 | \( 1 + (0.235 + 0.971i)T \) |
| 41 | \( 1 + (0.959 - 0.281i)T \) |
| 43 | \( 1 + (-0.142 + 0.989i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.981 - 0.189i)T \) |
| 59 | \( 1 + (0.327 + 0.945i)T \) |
| 61 | \( 1 + (0.786 - 0.618i)T \) |
| 67 | \( 1 + (0.0475 + 0.998i)T \) |
| 71 | \( 1 + (0.841 - 0.540i)T \) |
| 73 | \( 1 + (-0.580 - 0.814i)T \) |
| 79 | \( 1 + (0.981 + 0.189i)T \) |
| 83 | \( 1 + (0.959 + 0.281i)T \) |
| 89 | \( 1 + (-0.928 + 0.371i)T \) |
| 97 | \( 1 + (0.959 - 0.281i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.05080492451488489429658353697, −26.43561678327639540568941814180, −25.75014375183640131744268251766, −24.71449240879506141163480912525, −23.69072892084011106037511683794, −23.176434914874309278489206719881, −21.26364314375638666936482833756, −20.260485300373396849102850770525, −19.24548412281166451364544936368, −18.617057353806559604506138501222, −18.00562024409698651234873415842, −16.35238633928191629856092362220, −15.588992367557744485959314569263, −14.512090086582221330008099445970, −13.73833433757921084843256134828, −12.07987206982349110769367974392, −11.04148366591940579603056063527, −9.82951463091063692288845392286, −8.61243333827577975100353640973, −7.736659141974580116866193330819, −7.02368194736489823724241192305, −5.748233775732020705307168187702, −3.585379996347507884057673118120, −2.34492557055093548040054187660, −0.727161141466245279126847537926,
1.12037558266479928664457215084, 2.8344382436407718395799091737, 3.80003532277246323727580207800, 5.23150483257360919231913712724, 7.53664336478487479932103530296, 8.06832301883160349421756623358, 9.12011193616051733817171872486, 10.10413314787119519506926549442, 11.08297196591747815410940991959, 12.39867210930412274804004269393, 13.294950562971487374366951826981, 14.97036637292408104373388433457, 15.93963700943372054104474679130, 16.4522154241824306430468804651, 17.94256486847020382815185860671, 18.92804667835009277609402497210, 19.99560424188993987258040532826, 20.52394480422918311745725924579, 21.24842764989950749738319601070, 22.587787272701135242651753555503, 23.94715928711648748027885324736, 25.16425050051067020524572529329, 25.83100788205325353176991869081, 26.81515355511777571939085234994, 27.70019234281398236935252980565