| L(s) = 1 | + (−0.916 − 0.400i)3-s + (−0.220 − 0.975i)5-s + (−0.734 − 0.678i)7-s + (0.678 + 0.734i)9-s + (−0.950 − 0.312i)11-s + (0.429 + 0.902i)13-s + (−0.189 + 0.981i)15-s + (0.998 + 0.0475i)17-s + (0.987 − 0.158i)19-s + (0.400 + 0.916i)21-s + (−0.204 − 0.978i)23-s + (−0.902 + 0.429i)25-s + (−0.327 − 0.945i)27-s + (−0.605 + 0.795i)29-s + (0.959 + 0.281i)31-s + ⋯ |
| L(s) = 1 | + (−0.916 − 0.400i)3-s + (−0.220 − 0.975i)5-s + (−0.734 − 0.678i)7-s + (0.678 + 0.734i)9-s + (−0.950 − 0.312i)11-s + (0.429 + 0.902i)13-s + (−0.189 + 0.981i)15-s + (0.998 + 0.0475i)17-s + (0.987 − 0.158i)19-s + (0.400 + 0.916i)21-s + (−0.204 − 0.978i)23-s + (−0.902 + 0.429i)25-s + (−0.327 − 0.945i)27-s + (−0.605 + 0.795i)29-s + (0.959 + 0.281i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8227308280 - 0.2660525040i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8227308280 - 0.2660525040i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6969474205 - 0.2000745786i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6969474205 - 0.2000745786i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 397 | \( 1 \) |
| good | 3 | \( 1 + (-0.916 - 0.400i)T \) |
| 5 | \( 1 + (-0.220 - 0.975i)T \) |
| 7 | \( 1 + (-0.734 - 0.678i)T \) |
| 11 | \( 1 + (-0.950 - 0.312i)T \) |
| 13 | \( 1 + (0.429 + 0.902i)T \) |
| 17 | \( 1 + (0.998 + 0.0475i)T \) |
| 19 | \( 1 + (0.987 - 0.158i)T \) |
| 23 | \( 1 + (-0.204 - 0.978i)T \) |
| 29 | \( 1 + (-0.605 + 0.795i)T \) |
| 31 | \( 1 + (0.959 + 0.281i)T \) |
| 37 | \( 1 + (-0.444 + 0.895i)T \) |
| 41 | \( 1 + (0.342 - 0.939i)T \) |
| 43 | \( 1 + (0.0475 + 0.998i)T \) |
| 47 | \( 1 + (0.266 + 0.963i)T \) |
| 53 | \( 1 + (0.189 + 0.981i)T \) |
| 59 | \( 1 + (0.993 + 0.110i)T \) |
| 61 | \( 1 + (-0.429 + 0.902i)T \) |
| 67 | \( 1 + (-0.997 + 0.0634i)T \) |
| 71 | \( 1 + (0.690 + 0.723i)T \) |
| 73 | \( 1 + (0.873 + 0.486i)T \) |
| 79 | \( 1 + (0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.888 - 0.458i)T \) |
| 89 | \( 1 + (0.996 - 0.0792i)T \) |
| 97 | \( 1 + (-0.386 + 0.922i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.840861627473662249421511701361, −19.70667018503820119796145233343, −18.84788386676728894705065498050, −18.24231296801494512384491300506, −17.82051888266837203828807111397, −16.782980404453972244435355937759, −15.80785753579052071911229864808, −15.56900906269507287200992793981, −14.89475057646435598757270737459, −13.70949444318498385761633799411, −12.91525863599553557544137463087, −12.046853088579983742005612569840, −11.53034611571674204766303541507, −10.55711376811289519284055905896, −10.02030680641841355639648126756, −9.45099528730847948521944309144, −7.999368347502397976631893980003, −7.39404112439868985376622731053, −6.395693502440626658329038579365, −5.64823499737254866938369102022, −5.212599074695335911101125199726, −3.699792131784707777073143535479, −3.26496565382143779555344683164, −2.183800262371748337302809727492, −0.580651794819667337174545100168,
0.74340432999773850851903911115, 1.41471644352254489166442855358, 2.85850927491644982940377998116, 3.97809200183755118192725049335, 4.7843469416817988241027389631, 5.55853581334746658426013566820, 6.330243964567567228243296488647, 7.269625580993175771269829539704, 7.89745261468763226094454926084, 8.89446750802703294623608806905, 9.86942974242273809408672955671, 10.52423134161298713085928738717, 11.40947170979856753481612029981, 12.20789882296090866249491228883, 12.7491347967824683863629412382, 13.51838317485955331222474238865, 14.06867577914285754660714582011, 15.60595617616089759761508877299, 16.259009018108337891345733229698, 16.5108692316071535455779438875, 17.27797418744266019157802105882, 18.2367436147953554121014015434, 18.89803686059544088071134474634, 19.522017460775866142835913203, 20.58445424952261976235625472640