| L(s) = 1 | + (0.902 − 0.429i)3-s + (−0.934 + 0.356i)5-s + (0.776 − 0.630i)7-s + (0.630 − 0.776i)9-s + (−0.678 + 0.734i)11-s + (−0.666 − 0.745i)13-s + (−0.690 + 0.723i)15-s + (−0.189 + 0.981i)17-s + (0.916 + 0.400i)19-s + (0.429 − 0.902i)21-s + (−0.975 − 0.220i)23-s + (0.745 − 0.666i)25-s + (0.235 − 0.971i)27-s + (0.873 + 0.486i)29-s + (−0.415 − 0.909i)31-s + ⋯ |
| L(s) = 1 | + (0.902 − 0.429i)3-s + (−0.934 + 0.356i)5-s + (0.776 − 0.630i)7-s + (0.630 − 0.776i)9-s + (−0.678 + 0.734i)11-s + (−0.666 − 0.745i)13-s + (−0.690 + 0.723i)15-s + (−0.189 + 0.981i)17-s + (0.916 + 0.400i)19-s + (0.429 − 0.902i)21-s + (−0.975 − 0.220i)23-s + (0.745 − 0.666i)25-s + (0.235 − 0.971i)27-s + (0.873 + 0.486i)29-s + (−0.415 − 0.909i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1588 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.515490886 - 0.9967160344i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.515490886 - 0.9967160344i\) |
| \(L(1)\) |
\(\approx\) |
\(1.243339685 - 0.2945691625i\) |
| \(L(1)\) |
\(\approx\) |
\(1.243339685 - 0.2945691625i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 397 | \( 1 \) |
| good | 3 | \( 1 + (0.902 - 0.429i)T \) |
| 5 | \( 1 + (-0.934 + 0.356i)T \) |
| 7 | \( 1 + (0.776 - 0.630i)T \) |
| 11 | \( 1 + (-0.678 + 0.734i)T \) |
| 13 | \( 1 + (-0.666 - 0.745i)T \) |
| 17 | \( 1 + (-0.189 + 0.981i)T \) |
| 19 | \( 1 + (0.916 + 0.400i)T \) |
| 23 | \( 1 + (-0.975 - 0.220i)T \) |
| 29 | \( 1 + (0.873 + 0.486i)T \) |
| 31 | \( 1 + (-0.415 - 0.909i)T \) |
| 37 | \( 1 + (0.967 - 0.251i)T \) |
| 41 | \( 1 + (0.342 - 0.939i)T \) |
| 43 | \( 1 + (0.981 - 0.189i)T \) |
| 47 | \( 1 + (-0.527 - 0.849i)T \) |
| 53 | \( 1 + (0.690 + 0.723i)T \) |
| 59 | \( 1 + (-0.567 - 0.823i)T \) |
| 61 | \( 1 + (0.666 - 0.745i)T \) |
| 67 | \( 1 + (0.701 + 0.712i)T \) |
| 71 | \( 1 + (0.0950 - 0.995i)T \) |
| 73 | \( 1 + (0.997 - 0.0634i)T \) |
| 79 | \( 1 + (0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.327 + 0.945i)T \) |
| 89 | \( 1 + (-0.978 - 0.204i)T \) |
| 97 | \( 1 + (-0.857 - 0.513i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.606294414522249112595183003323, −19.84573794284805491245316239009, −19.35007093280329374789641884994, −18.46143159673317899118694349104, −17.90806938171479464930426979651, −16.51858504729826658315388096234, −15.98572855568832680205079926661, −15.53611305949834186507898157215, −14.56996445389279711828481904202, −14.062642911045381021300872611561, −13.22925345296086391124046269967, −12.17246947641612886792043599132, −11.54905334800557847958074139063, −10.86654206043544748863228541087, −9.65468420564759837582593005254, −9.11977913377786349444651879796, −8.16485935185266342063553715714, −7.86590453812435016528687388091, −6.93890861968300807142252468936, −5.45315290577959504064288516101, −4.78027311912368956499075219344, −4.13232665465993045411273897460, −2.97186473516455296142160277047, −2.43992107817075655847734910444, −1.11726472662874277083666464268,
0.6648994379857213247974669743, 1.915596597768664068988802235789, 2.694836052761747356282714614625, 3.7629208577794064321663188201, 4.29350339727646413891587002340, 5.37371779039899816968571608344, 6.67059628102941157449868894274, 7.59794567007384739562990970659, 7.780036620024722046052478517757, 8.47892947298658292241864001329, 9.74836552281138466378166335817, 10.3808204033558884018205455393, 11.2037907307740140937496569017, 12.337424314581155810004931720050, 12.60024482388970005387518463834, 13.760886601305040612693726698794, 14.38721128162168173231306866418, 15.08676143854361653269514517143, 15.53942634480140114546153330352, 16.56417843394001929647249362816, 17.73750297723016836889922887585, 18.07322303253031158473419538828, 18.93402554620443275084789406041, 19.877477341150408703528559420202, 20.119731956841106124511559975732