L(s) = 1 | + (−0.723 − 0.690i)2-s + (−0.5 − 0.866i)3-s + (0.0475 + 0.998i)4-s + (0.654 + 0.755i)5-s + (−0.235 + 0.971i)6-s + (0.995 + 0.0950i)7-s + (0.654 − 0.755i)8-s + (−0.5 + 0.866i)9-s + (0.0475 − 0.998i)10-s + (0.841 − 0.540i)12-s + (−0.654 − 0.755i)14-s + (0.327 − 0.945i)15-s + (−0.995 + 0.0950i)16-s + (−0.786 − 0.618i)17-s + (0.959 − 0.281i)18-s + (−0.928 − 0.371i)19-s + ⋯ |
L(s) = 1 | + (−0.723 − 0.690i)2-s + (−0.5 − 0.866i)3-s + (0.0475 + 0.998i)4-s + (0.654 + 0.755i)5-s + (−0.235 + 0.971i)6-s + (0.995 + 0.0950i)7-s + (0.654 − 0.755i)8-s + (−0.5 + 0.866i)9-s + (0.0475 − 0.998i)10-s + (0.841 − 0.540i)12-s + (−0.654 − 0.755i)14-s + (0.327 − 0.945i)15-s + (−0.995 + 0.0950i)16-s + (−0.786 − 0.618i)17-s + (0.959 − 0.281i)18-s + (−0.928 − 0.371i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.514 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.514 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03534686179 + 0.06245333527i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.03534686179 + 0.06245333527i\) |
\(L(1)\) |
\(\approx\) |
\(0.5607097836 - 0.1983205734i\) |
\(L(1)\) |
\(\approx\) |
\(0.5607097836 - 0.1983205734i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.723 - 0.690i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.654 + 0.755i)T \) |
| 7 | \( 1 + (0.995 + 0.0950i)T \) |
| 17 | \( 1 + (-0.786 - 0.618i)T \) |
| 19 | \( 1 + (-0.928 - 0.371i)T \) |
| 23 | \( 1 + (-0.995 + 0.0950i)T \) |
| 29 | \( 1 + (-0.786 + 0.618i)T \) |
| 31 | \( 1 + (-0.841 - 0.540i)T \) |
| 37 | \( 1 + (-0.0475 + 0.998i)T \) |
| 41 | \( 1 + (-0.723 - 0.690i)T \) |
| 43 | \( 1 + (-0.327 - 0.945i)T \) |
| 47 | \( 1 + (0.959 + 0.281i)T \) |
| 53 | \( 1 + (0.415 + 0.909i)T \) |
| 59 | \( 1 + (-0.723 + 0.690i)T \) |
| 61 | \( 1 + (0.723 - 0.690i)T \) |
| 67 | \( 1 + (-0.723 - 0.690i)T \) |
| 71 | \( 1 + (-0.928 - 0.371i)T \) |
| 73 | \( 1 + (-0.415 + 0.909i)T \) |
| 79 | \( 1 + (-0.654 - 0.755i)T \) |
| 83 | \( 1 + (-0.415 - 0.909i)T \) |
| 89 | \( 1 + (-0.928 + 0.371i)T \) |
| 97 | \( 1 + (0.327 + 0.945i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.28288243647183243651501987928, −19.646268035805516811734084476092, −18.35103087000802439994714904446, −17.76414769596422097690018079057, −17.248647952737006885014069402723, −16.61765268372878987504161414340, −16.02123966456256127655921430695, −15.049077203316057294142302562612, −14.60709519172639820505613685937, −13.72434161542819585893831809893, −12.69499955007554747659582568083, −11.61594712592176044445161384872, −10.877414523692922847035608610963, −10.22594333486556833199214150418, −9.50175014346725100111184285352, −8.61852150263563278704934359340, −8.279585230636806801743406067054, −7.01619869676452032135453224760, −5.94585497039145581020646397174, −5.598514664942550826718510383819, −4.59295438840039496948203874842, −4.10183952646644716427663093888, −2.17023011789533350084591791602, −1.44227749485485274852260080172, −0.03422682755210127847111228189,
1.48019305750618168604826420581, 2.06200961353799628931446553988, 2.72166188182503896159946674873, 4.058620856679038843231615928014, 5.14483302066316044961843857642, 6.11471623014092131750868157559, 7.04427805464242704828773919204, 7.53461736769459720014027599718, 8.522999703163867058100055989986, 9.20411713593091555935074866639, 10.44792932659736392954214608073, 10.81508372979737686028304439248, 11.57993832837860455528158745206, 12.16212367584873613325232632983, 13.252751899230678979959091684477, 13.667613099038354604070001271566, 14.61053754867077787835052686160, 15.61125964729852627450256439306, 16.825923020772921025028770472104, 17.31336923399440697606454022018, 17.907531889253875242109742289080, 18.57563920261497618634304395497, 18.855330978405595356221216986830, 20.08602984649690157374248027009, 20.491657943051490886488644396