| L(s) = 1 | + (−0.991 + 0.132i)2-s + (0.669 + 0.743i)3-s + (0.964 − 0.263i)4-s + (0.0855 − 0.996i)5-s + (−0.761 − 0.647i)6-s + (−0.398 − 0.917i)7-s + (−0.921 + 0.389i)8-s + (−0.104 + 0.994i)9-s + (0.0475 + 0.998i)10-s + (0.841 + 0.540i)12-s + (0.516 + 0.856i)14-s + (0.797 − 0.603i)15-s + (0.861 − 0.508i)16-s + (0.272 − 0.962i)17-s + (−0.0285 − 0.999i)18-s + (−0.0665 − 0.997i)19-s + ⋯ |
| L(s) = 1 | + (−0.991 + 0.132i)2-s + (0.669 + 0.743i)3-s + (0.964 − 0.263i)4-s + (0.0855 − 0.996i)5-s + (−0.761 − 0.647i)6-s + (−0.398 − 0.917i)7-s + (−0.921 + 0.389i)8-s + (−0.104 + 0.994i)9-s + (0.0475 + 0.998i)10-s + (0.841 + 0.540i)12-s + (0.516 + 0.856i)14-s + (0.797 − 0.603i)15-s + (0.861 − 0.508i)16-s + (0.272 − 0.962i)17-s + (−0.0285 − 0.999i)18-s + (−0.0665 − 0.997i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.360i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.360i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.06116487836 - 0.3281072292i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.06116487836 - 0.3281072292i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6688082026 - 0.05979784704i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6688082026 - 0.05979784704i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.991 + 0.132i)T \) |
| 3 | \( 1 + (0.669 + 0.743i)T \) |
| 5 | \( 1 + (0.0855 - 0.996i)T \) |
| 7 | \( 1 + (-0.398 - 0.917i)T \) |
| 17 | \( 1 + (0.272 - 0.962i)T \) |
| 19 | \( 1 + (-0.0665 - 0.997i)T \) |
| 23 | \( 1 + (-0.995 - 0.0950i)T \) |
| 29 | \( 1 + (0.345 - 0.938i)T \) |
| 31 | \( 1 + (-0.998 - 0.0570i)T \) |
| 37 | \( 1 + (-0.935 + 0.353i)T \) |
| 41 | \( 1 + (-0.432 - 0.901i)T \) |
| 43 | \( 1 + (-0.327 + 0.945i)T \) |
| 47 | \( 1 + (-0.0285 + 0.999i)T \) |
| 53 | \( 1 + (-0.870 + 0.491i)T \) |
| 59 | \( 1 + (-0.432 + 0.901i)T \) |
| 61 | \( 1 + (-0.991 - 0.132i)T \) |
| 67 | \( 1 + (0.723 - 0.690i)T \) |
| 71 | \( 1 + (-0.532 + 0.846i)T \) |
| 73 | \( 1 + (-0.736 + 0.676i)T \) |
| 79 | \( 1 + (0.974 - 0.226i)T \) |
| 83 | \( 1 + (0.198 + 0.980i)T \) |
| 89 | \( 1 + (0.928 + 0.371i)T \) |
| 97 | \( 1 + (0.820 - 0.572i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.57717321101487891121959603966, −19.80262763874278620016376096172, −19.1619481986610114658304604768, −18.618129577075414581079315162788, −18.1692273366764561874133461150, −17.46313055327804527890566352291, −16.40982369091138522256053396786, −15.56211042808987306810630659404, −14.825889677495139826923189201885, −14.34699801122152331594974590183, −13.17820721976667847661010234370, −12.25731771293668127028042224307, −11.917986902520339438095840155046, −10.743347062973631896755347971624, −10.069297594044025179553961682512, −9.28461043639768379006301386946, −8.45719886576617562032117816108, −7.87653946257789346098165086286, −6.99452918705658842351541975007, −6.30807094019054179558833909795, −5.70553644401863440655969859043, −3.50940577481039989300676721251, −3.278694409088571911618901937207, −1.994674706052956026585004816819, −1.77845914873523344681715989280,
0.14508060170222571219746599167, 1.33741941050044897691704292734, 2.40749798477620562513019922355, 3.37213988844802947652271581120, 4.37337921990255705954105059164, 5.17489197997232872039357639459, 6.250462645339806883127746104812, 7.36752556534754136120556105433, 7.91721700009897528494366169095, 8.81321270257951769205105452125, 9.43384930338307592392907018482, 9.95345686080668918204443141019, 10.75610739009316274564933433173, 11.60075316455517718664523261672, 12.59070401019011329705922519016, 13.63243123649902851246812208727, 14.11243959513205480165737897928, 15.2936544163070807613292423791, 15.92633489374756868672876944691, 16.39961566371632785361578902776, 17.09263001958717884505503866751, 17.75261829837646308249205746450, 18.88702884357747652840438415318, 19.627822646021282918701018824043, 20.17191438721074202482538565443