L(s) = 1 | + (−0.540 − 0.841i)2-s + 3-s + (−0.415 + 0.909i)4-s + (−0.989 − 0.142i)5-s + (−0.540 − 0.841i)6-s + (−0.755 − 0.654i)7-s + (0.989 − 0.142i)8-s + 9-s + (0.415 + 0.909i)10-s + (−0.415 + 0.909i)12-s + (−0.142 + 0.989i)14-s + (−0.989 − 0.142i)15-s + (−0.654 − 0.755i)16-s + (−0.959 − 0.281i)17-s + (−0.540 − 0.841i)18-s + (0.281 + 0.959i)19-s + ⋯ |
L(s) = 1 | + (−0.540 − 0.841i)2-s + 3-s + (−0.415 + 0.909i)4-s + (−0.989 − 0.142i)5-s + (−0.540 − 0.841i)6-s + (−0.755 − 0.654i)7-s + (0.989 − 0.142i)8-s + 9-s + (0.415 + 0.909i)10-s + (−0.415 + 0.909i)12-s + (−0.142 + 0.989i)14-s + (−0.989 − 0.142i)15-s + (−0.654 − 0.755i)16-s + (−0.959 − 0.281i)17-s + (−0.540 − 0.841i)18-s + (0.281 + 0.959i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6250829497 - 0.8775716222i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6250829497 - 0.8775716222i\) |
\(L(1)\) |
\(\approx\) |
\(0.7704525595 - 0.3958746165i\) |
\(L(1)\) |
\(\approx\) |
\(0.7704525595 - 0.3958746165i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.540 - 0.841i)T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + (-0.989 - 0.142i)T \) |
| 7 | \( 1 + (-0.755 - 0.654i)T \) |
| 17 | \( 1 + (-0.959 - 0.281i)T \) |
| 19 | \( 1 + (0.281 + 0.959i)T \) |
| 23 | \( 1 + (0.654 + 0.755i)T \) |
| 29 | \( 1 + (0.959 - 0.281i)T \) |
| 31 | \( 1 + (-0.909 + 0.415i)T \) |
| 37 | \( 1 + (0.909 - 0.415i)T \) |
| 41 | \( 1 + (-0.540 - 0.841i)T \) |
| 43 | \( 1 + (-0.142 - 0.989i)T \) |
| 47 | \( 1 + (0.540 - 0.841i)T \) |
| 53 | \( 1 + (-0.654 + 0.755i)T \) |
| 59 | \( 1 + (0.540 - 0.841i)T \) |
| 61 | \( 1 + (-0.841 - 0.540i)T \) |
| 67 | \( 1 + (0.540 + 0.841i)T \) |
| 71 | \( 1 + (-0.281 - 0.959i)T \) |
| 73 | \( 1 + (0.755 - 0.654i)T \) |
| 79 | \( 1 + (0.142 - 0.989i)T \) |
| 83 | \( 1 + (0.755 + 0.654i)T \) |
| 89 | \( 1 + (-0.281 + 0.959i)T \) |
| 97 | \( 1 + (0.989 - 0.142i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.25890009755047035150891320045, −19.77777830540573576215571370818, −19.28956516704284721319277023506, −18.50492105790357532417067751225, −18.0448665480764288344601220904, −16.76888778801449979876367437812, −16.015554631937014239854894826, −15.50593255733928822884086255099, −14.97697271512879183714890620679, −14.30926392728555995934741058684, −13.18638343286195131486611016076, −12.79023143241173975242516736027, −11.50016474047576142750469561824, −10.65795837965972246407591300554, −9.68310806710676746479947609078, −8.98702554995018880468586228220, −8.48081106357633744841981162646, −7.691086957107118073064663280472, −6.845908675673932630545097140590, −6.359251644104156869443367026773, −4.915972122217835128037653513736, −4.27488421870529773570217417239, −3.13844050940363075959029936609, −2.37829760766276110996554619211, −0.94186481952937624639611042760,
0.539080354701279612477082146916, 1.65626296417804160597124877537, 2.74905843699996694950646064065, 3.57351167204178693132641683513, 3.95148780222675993401973567724, 4.926682630498815906391584985723, 6.744940079949291912491146239827, 7.39601086724070779981629816911, 8.02595696834806877495962264259, 8.908173527594092661064215237043, 9.42995272230898747555701764258, 10.37012613703862111985653833305, 10.97351400842290159712198910101, 12.05005882202580397448146183506, 12.62763367866562308394516885514, 13.43896542170055674840856839611, 13.9909869936471760756001826816, 15.13741623301023708342613648969, 15.91594526738463961275089960143, 16.46359407207387528169935920694, 17.41563650191548300143637875681, 18.44482220764039440333399395058, 19.03371853893807066516442170001, 19.62263197237999158057028755794, 20.221379910939238521880946288811