| L(s) = 1 | + (0.766 − 0.642i)3-s + (0.342 − 0.939i)5-s + (0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (−0.342 − 0.939i)15-s + (0.984 + 0.173i)17-s + (−0.642 − 0.766i)19-s + (0.939 − 0.342i)21-s + (−0.866 + 0.5i)23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)27-s + (0.866 + 0.5i)29-s − i·31-s + ⋯ |
| L(s) = 1 | + (0.766 − 0.642i)3-s + (0.342 − 0.939i)5-s + (0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.984 + 0.173i)13-s + (−0.342 − 0.939i)15-s + (0.984 + 0.173i)17-s + (−0.642 − 0.766i)19-s + (0.939 − 0.342i)21-s + (−0.866 + 0.5i)23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)27-s + (0.866 + 0.5i)29-s − i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.337338843 - 0.6821293593i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.337338843 - 0.6821293593i\) |
| \(L(1)\) |
\(\approx\) |
\(1.322943151 - 0.4157518168i\) |
| \(L(1)\) |
\(\approx\) |
\(1.322943151 - 0.4157518168i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 37 | \( 1 \) |
| good | 3 | \( 1 + (0.766 - 0.642i)T \) |
| 5 | \( 1 + (0.342 - 0.939i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.984 + 0.173i)T \) |
| 17 | \( 1 + (0.984 + 0.173i)T \) |
| 19 | \( 1 + (-0.642 - 0.766i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.866 + 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.939 + 0.342i)T \) |
| 59 | \( 1 + (0.342 + 0.939i)T \) |
| 61 | \( 1 + (0.984 - 0.173i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.766 + 0.642i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.342 + 0.939i)T \) |
| 83 | \( 1 + (-0.173 + 0.984i)T \) |
| 89 | \( 1 + (0.342 + 0.939i)T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.02094227782048017985639186110, −26.919860825399791994847106362296, −26.6405820720343622280899098181, −25.46318587520297447498199786001, −24.57854042731878681539757188125, −23.35106431094244895296750577985, −22.09243937058234645012333388517, −21.35660464450508097059959745986, −20.57617167525102263356205170064, −19.29723615683470601487874055424, −18.49057312746253934314797875723, −17.23199021977309386060862792979, −16.14111950960814453755923244856, −14.71561316174031278000837827486, −14.45151947932005143344227510442, −13.373510358930373369390013691265, −11.64195434780264733801714435660, −10.460519386920071838800195505207, −9.91251631137921385778099656324, −8.2584993368357699494465141053, −7.59766911244892098240543092983, −5.88336327526985602801573462873, −4.551919033932538683373849515861, −3.21761307000961741002896557242, −2.124545131194434211605862981407,
1.50218192358748140014316913481, 2.48984345212292648094744057252, 4.41128002661309037859312632130, 5.47660570632765846490834323961, 7.17081026001450128547661827233, 8.1333097244689606040195750266, 9.048634012669462907172186640159, 10.17089401158225473641997570470, 12.08473076926800661985655345885, 12.519215378882165475087433479622, 13.81496906984154414984320100866, 14.662887085388805261996417724010, 15.72976063321440736266515916206, 17.33478418164140594147830313376, 17.84286568346725795120101555191, 19.15726228481158259099003021390, 20.12565402166468820677635426277, 20.93021381262198769638467419641, 21.75113101570139118586470443077, 23.672140997954245410226961025866, 23.99648872397924807948751925977, 25.184288123823299012515526384433, 25.657425952635136216388545214641, 27.065721667665420460052548255, 28.04328637911616859987678779346