L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)11-s + (0.5 + 0.866i)15-s + 17-s + (−0.866 + 0.5i)19-s − 23-s + (0.5 + 0.866i)25-s − i·27-s + (0.866 − 0.5i)29-s + (0.5 + 0.866i)31-s + (0.5 + 0.866i)33-s − i·37-s + (−0.5 − 0.866i)41-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)11-s + (0.5 + 0.866i)15-s + 17-s + (−0.866 + 0.5i)19-s − 23-s + (0.5 + 0.866i)25-s − i·27-s + (0.866 − 0.5i)29-s + (0.5 + 0.866i)31-s + (0.5 + 0.866i)33-s − i·37-s + (−0.5 − 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5651550188 - 0.3986463399i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5651550188 - 0.3986463399i\) |
\(L(1)\) |
\(\approx\) |
\(0.6293940944 - 0.1625191967i\) |
\(L(1)\) |
\(\approx\) |
\(0.6293940944 - 0.1625191967i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (0.866 - 0.5i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.92272390307106112691420425028, −20.1960650243205918029523778000, −19.20759648796062030709886275721, −18.566853139138889110798704123894, −17.799052671906995199461619501953, −17.13699711579661204485346845230, −16.01274136375986881808643739634, −15.84365040055072281059479518806, −14.92132419294983514875694269375, −14.28782499215869743023127288804, −12.95787115628519979982710572850, −12.30772566494561928196351810717, −11.64355317130266274443450840956, −10.78575147640210038872243241079, −10.30251306254609717506629083938, −9.47971488435958677920159820533, −8.25016706783724635483286991642, −7.5622200674683623305638310273, −6.67261970967651773603515093546, −5.87840740232894797283773226416, −4.8833516977952368339591475095, −4.218926266625462952703975875207, −3.33728529424093609542381586438, −2.27799485258302125722153752371, −0.697432108876906758441992420434,
0.48764243711096969535154459725, 1.502678894166532127243746558119, 2.74992240679856800471327928766, 3.89913828812003217908989523521, 4.76120955615491717667441215996, 5.549586199956078967639701683285, 6.31303270638552459554701448684, 7.34667963463155160746928312170, 8.05759404907266696374273869809, 8.56902720655499352383644229946, 10.08872463117466897205976509210, 10.549969871211896745890527743780, 11.57587624445142130578041452802, 12.12295928072015356510374720198, 12.718449222007533503130320545498, 13.54608417764067360693902257563, 14.42521237467150542997769035553, 15.678385723740045273010291608742, 15.9738889374033534330652882847, 16.83051462415301782924097921805, 17.4259533349095176575290507971, 18.47559669237162254274855119470, 18.94409953152537511385847994354, 19.59235151499015395514466755519, 20.62554863008674918419053080212