| L(s) = 1 | + (0.995 + 0.0950i)2-s + (0.981 + 0.189i)4-s + (0.786 − 0.618i)5-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)10-s + (0.786 − 0.618i)11-s + (0.723 + 0.690i)13-s + (0.928 + 0.371i)16-s + (0.654 + 0.755i)17-s + (0.580 + 0.814i)19-s + (0.888 − 0.458i)20-s + (0.841 − 0.540i)22-s + (0.888 − 0.458i)23-s + (0.235 − 0.971i)25-s + (0.654 + 0.755i)26-s + ⋯ |
| L(s) = 1 | + (0.995 + 0.0950i)2-s + (0.981 + 0.189i)4-s + (0.786 − 0.618i)5-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)10-s + (0.786 − 0.618i)11-s + (0.723 + 0.690i)13-s + (0.928 + 0.371i)16-s + (0.654 + 0.755i)17-s + (0.580 + 0.814i)19-s + (0.888 − 0.458i)20-s + (0.841 − 0.540i)22-s + (0.888 − 0.458i)23-s + (0.235 − 0.971i)25-s + (0.654 + 0.755i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1407 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1407 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.992 + 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(7.020861939 + 0.4406635869i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(7.020861939 + 0.4406635869i\) |
| \(L(1)\) |
\(\approx\) |
\(2.757133557 + 0.05830051950i\) |
| \(L(1)\) |
\(\approx\) |
\(2.757133557 + 0.05830051950i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 67 | \( 1 \) |
| good | 2 | \( 1 + (0.995 + 0.0950i)T \) |
| 5 | \( 1 + (0.786 - 0.618i)T \) |
| 11 | \( 1 + (0.786 - 0.618i)T \) |
| 13 | \( 1 + (0.723 + 0.690i)T \) |
| 17 | \( 1 + (0.654 + 0.755i)T \) |
| 19 | \( 1 + (0.580 + 0.814i)T \) |
| 23 | \( 1 + (0.888 - 0.458i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.235 + 0.971i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.981 + 0.189i)T \) |
| 43 | \( 1 + (-0.654 - 0.755i)T \) |
| 47 | \( 1 + (-0.841 - 0.540i)T \) |
| 53 | \( 1 + (0.327 + 0.945i)T \) |
| 59 | \( 1 + (-0.723 + 0.690i)T \) |
| 61 | \( 1 + (-0.786 - 0.618i)T \) |
| 71 | \( 1 + (0.327 + 0.945i)T \) |
| 73 | \( 1 + (-0.142 + 0.989i)T \) |
| 79 | \( 1 + (-0.959 + 0.281i)T \) |
| 83 | \( 1 + (0.786 - 0.618i)T \) |
| 89 | \( 1 + (0.888 + 0.458i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.75023563714113511422604133351, −20.0398603434074216687374718019, −19.23805884843278618362597427020, −18.2641289157786788415446667327, −17.584768214573271100094445671320, −16.72083373888982849758598259365, −15.83487782632548965846058937756, −15.021598149549482431144526821310, −14.486740966142846638859200117916, −13.624578677094520585780943662002, −13.18675276169816124739391642939, −12.18839696550805382365960692464, −11.4064389073665362849745313240, −10.721061100394553627970481440503, −9.8585655050170216922185007787, −9.14081858331643378189577318260, −7.71724182576594297714918459504, −6.944528573270109557233478186453, −6.33025981779042677904891989095, −5.38637509700092536469928394564, −4.7821054045038228646996888283, −3.43498706758576846418576630536, −3.019089094922154347684886921887, −1.87412407859612800378966524022, −1.02229999295895293374896732527,
1.2033019124814703412261802065, 1.64685621049608221443464126666, 2.99964463040233437458144070516, 3.77710643284519498579937908319, 4.69397079054457575829533134219, 5.546811313306654270050518358135, 6.25161123123569696972496024371, 6.842320912093665887555556602209, 8.20474489044161685270869385297, 8.75649051308820921026277075775, 9.918981961205320290706419639220, 10.63080137548675541677504201283, 11.72662709104656553040439366991, 12.174832175037656259846199931316, 13.12445661579341765332103080830, 13.832133318165359717340102711854, 14.224738597896023316275261256551, 15.18845777392776292800745589647, 16.11500572424538653975690842734, 16.841337143474749907573088940796, 17.11275513986098414206147485955, 18.46963791016582172317801686179, 19.20509797095585640308001167292, 20.15510192226121587466720297819, 20.805150015708948457862285644960