| L(s) = 1 | − i·3-s − 9-s − 11-s + i·13-s − i·17-s − 19-s + i·23-s + i·27-s − 29-s + 31-s + i·33-s + i·37-s + 39-s − 41-s + i·43-s + ⋯ |
| L(s) = 1 | − i·3-s − 9-s − 11-s + i·13-s − i·17-s − 19-s + i·23-s + i·27-s − 29-s + 31-s + i·33-s + i·37-s + 39-s − 41-s + i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08216507969 + 0.1473716561i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.08216507969 + 0.1473716561i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7308946952 - 0.1725408324i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7308946952 - 0.1725408324i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + T \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 \) |
| 23 | \( 1 \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 \) |
| 79 | \( 1 \) |
| 83 | \( 1 \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.93400859184728525997654700311, −26.733136591344421097384292886460, −26.06834246947710459012358753750, −25.03710045163192403107719164916, −23.65903971624991941063525760431, −22.77412403462972807971077821973, −21.74881874210423433546664241039, −20.88142838653315308451977286445, −20.0459864270281619808906665715, −18.78560263346815692521214571614, −17.50595322560601303268532008324, −16.61510493718233581284164489711, −15.42115142164895548648950450918, −14.882994618696397530911061803679, −13.42300090109785530163628396405, −12.30735985633199354506880650636, −10.68520404598161463923603323644, −10.3629492920566380153931357616, −8.84387859434234904056202302715, −7.91654211328002122350467123513, −6.10901154784052707221180540269, −5.04337221010898316341564980984, −3.803159652038460673548006742095, −2.48225265517008762185380177372, −0.06148958587469873920054335907,
1.7003000440856520411801028682, 2.962013405674335888482472672290, 4.81906831047126270424878719672, 6.16838580120941914467066301067, 7.253062983615418294430564189041, 8.25546793246418115848227508292, 9.52282482429614426950055490158, 11.06227973309800953059738805119, 11.97855823764077818994494660054, 13.16254613335902274987357913570, 13.87184128600035893493995925144, 15.155394046424681172907188940682, 16.454926290257718422393752321, 17.51092979691676403023657779386, 18.55459108576250076056868534428, 19.19991809570454315614611201224, 20.42873927102153000711367381433, 21.42685224225089977238904525265, 22.80888008568049079738602624620, 23.63794279840082816392030849251, 24.388591952752209945783586035100, 25.5504188781249847889456145745, 26.24066042064482119688548467403, 27.60007362489503159840821926516, 28.76738169154380200076842074293