| L(s) = 1 | + (0.974 − 0.222i)5-s + (−0.900 − 0.433i)7-s + (0.781 + 0.623i)11-s + (0.781 + 0.623i)13-s + 17-s + (−0.433 − 0.900i)19-s + (0.222 − 0.974i)23-s + (0.900 − 0.433i)25-s + (−0.222 − 0.974i)31-s + (−0.974 − 0.222i)35-s + (−0.781 + 0.623i)37-s − 41-s + (0.974 + 0.222i)43-s + (−0.623 + 0.781i)47-s + (0.623 + 0.781i)49-s + ⋯ |
| L(s) = 1 | + (0.974 − 0.222i)5-s + (−0.900 − 0.433i)7-s + (0.781 + 0.623i)11-s + (0.781 + 0.623i)13-s + 17-s + (−0.433 − 0.900i)19-s + (0.222 − 0.974i)23-s + (0.900 − 0.433i)25-s + (−0.222 − 0.974i)31-s + (−0.974 − 0.222i)35-s + (−0.781 + 0.623i)37-s − 41-s + (0.974 + 0.222i)43-s + (−0.623 + 0.781i)47-s + (0.623 + 0.781i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1392 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.912 - 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1392 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.912 - 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.863473156 - 0.3985745224i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.863473156 - 0.3985745224i\) |
| \(L(1)\) |
\(\approx\) |
\(1.280214968 - 0.1151206848i\) |
| \(L(1)\) |
\(\approx\) |
\(1.280214968 - 0.1151206848i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (0.974 - 0.222i)T \) |
| 7 | \( 1 + (-0.900 - 0.433i)T \) |
| 11 | \( 1 + (0.781 + 0.623i)T \) |
| 13 | \( 1 + (0.781 + 0.623i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.433 - 0.900i)T \) |
| 23 | \( 1 + (0.222 - 0.974i)T \) |
| 31 | \( 1 + (-0.222 - 0.974i)T \) |
| 37 | \( 1 + (-0.781 + 0.623i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + (0.974 + 0.222i)T \) |
| 47 | \( 1 + (-0.623 + 0.781i)T \) |
| 53 | \( 1 + (0.974 - 0.222i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (-0.433 + 0.900i)T \) |
| 67 | \( 1 + (0.781 - 0.623i)T \) |
| 71 | \( 1 + (-0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.222 + 0.974i)T \) |
| 79 | \( 1 + (0.623 + 0.781i)T \) |
| 83 | \( 1 + (-0.433 - 0.900i)T \) |
| 89 | \( 1 + (0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.900 - 0.433i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.199012704137678831518111237337, −20.05401144287768433497919402324, −19.23121825977560867384243607666, −18.64171400831118505273076409382, −17.90703194034382613045505371215, −16.99760144096286990667077303179, −16.437590375356277294217797262108, −15.59720233543990145510943790787, −14.67595121606143066141670162220, −13.94913814589384943869991697460, −13.276830714177221554861388627637, −12.49348130597411413814672600964, −11.72612025316262162150343967170, −10.55846309831352595249056845608, −10.11689553352520217138082666050, −9.13061603374080360683990703948, −8.642050000863935267973291868330, −7.41881506169366935241958022714, −6.41914501526076845466896991935, −5.87672776423777441475390978046, −5.26375253279129640902901400755, −3.53731161047463319700895710117, −3.33001701320755723273615632153, −2.00254621391911022381295756624, −1.07268948402725572524647282006,
0.89280906998977617342459231531, 1.85896971837480118931559170568, 2.894884688511227796108018424209, 3.91967247033651495286399196474, 4.73886021126516322077088585215, 5.86678035126820660110593732996, 6.54994754819625293950010973868, 7.10979853188580138965729050175, 8.46796446824525540958853723102, 9.22427998077557543296531866928, 9.82637677234026983493265668868, 10.53726464644150651107811351313, 11.53458491473128177453940929742, 12.52949171411135378926014267392, 13.09128485156474049714514989062, 13.87989527608981695991190262009, 14.49971319048060630873431012192, 15.48267610011929376838271035269, 16.4897938433385591325203120399, 16.89256556813402388633262895794, 17.59975508147824546001687902011, 18.5980667190721566653836609749, 19.16628117914827869973888911520, 20.13929532628007763265339529335, 20.72823395951405733092880533454