| L(s) = 1 | + (−0.781 − 0.623i)5-s + (−0.222 + 0.974i)7-s + (0.433 + 0.900i)11-s + (0.433 + 0.900i)13-s + 17-s + (−0.974 + 0.222i)19-s + (−0.623 − 0.781i)23-s + (0.222 + 0.974i)25-s + (0.623 − 0.781i)31-s + (0.781 − 0.623i)35-s + (−0.433 + 0.900i)37-s − 41-s + (−0.781 + 0.623i)43-s + (0.900 − 0.433i)47-s + (−0.900 − 0.433i)49-s + ⋯ |
| L(s) = 1 | + (−0.781 − 0.623i)5-s + (−0.222 + 0.974i)7-s + (0.433 + 0.900i)11-s + (0.433 + 0.900i)13-s + 17-s + (−0.974 + 0.222i)19-s + (−0.623 − 0.781i)23-s + (0.222 + 0.974i)25-s + (0.623 − 0.781i)31-s + (0.781 − 0.623i)35-s + (−0.433 + 0.900i)37-s − 41-s + (−0.781 + 0.623i)43-s + (0.900 − 0.433i)47-s + (−0.900 − 0.433i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1392 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.672 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1392 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.672 + 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2964851579 + 0.6699264747i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2964851579 + 0.6699264747i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8062093470 + 0.1756438560i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8062093470 + 0.1756438560i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (-0.781 - 0.623i)T \) |
| 7 | \( 1 + (-0.222 + 0.974i)T \) |
| 11 | \( 1 + (0.433 + 0.900i)T \) |
| 13 | \( 1 + (0.433 + 0.900i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (-0.974 + 0.222i)T \) |
| 23 | \( 1 + (-0.623 - 0.781i)T \) |
| 31 | \( 1 + (0.623 - 0.781i)T \) |
| 37 | \( 1 + (-0.433 + 0.900i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + (-0.781 + 0.623i)T \) |
| 47 | \( 1 + (0.900 - 0.433i)T \) |
| 53 | \( 1 + (-0.781 - 0.623i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (-0.974 - 0.222i)T \) |
| 67 | \( 1 + (0.433 - 0.900i)T \) |
| 71 | \( 1 + (0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.623 + 0.781i)T \) |
| 79 | \( 1 + (-0.900 - 0.433i)T \) |
| 83 | \( 1 + (-0.974 + 0.222i)T \) |
| 89 | \( 1 + (-0.623 + 0.781i)T \) |
| 97 | \( 1 + (0.222 + 0.974i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.366831797281980411667776286686, −19.70464371506496435724937454747, −19.12932242590377613368765080131, −18.42214914080223218134354701353, −17.401543306528754601414906355451, −16.79722228604257912229812809664, −15.871886315243217057780725332330, −15.3684739837341262375085191089, −14.24634183193787017947811879300, −13.89452341151951825942706362617, −12.84953127304824307034965470719, −12.035912339460628123366192356995, −11.12568690122733507205167559552, −10.58524141449753819958269965427, −9.894304723445224168092085541248, −8.59744710033764859614913583707, −7.98760628963782852067977721802, −7.17754521515802957508506921496, −6.40138593132216770032608479912, −5.52211927792669182867786738189, −4.248741461313379288885333062644, −3.53496669713517103353800400855, −3.00316786606595717740177977647, −1.41045150716773246554524235911, −0.29827583061007801013602696580,
1.371534422272910473523081030603, 2.25938736160847729691419618897, 3.49199910544838140626850555387, 4.31147806673715675670100626047, 5.03546761411902006896026668569, 6.14808614947841717707716048323, 6.82888905252633543802155335152, 8.01654365849715031070544516605, 8.52764224484786480736678991873, 9.37782868228095831474032048289, 10.10719441274346379977036021007, 11.31263144574561384596532030360, 12.139343885808311052780946849433, 12.30012325861868824738625006843, 13.32918160666268784111737171762, 14.40026666319018644921202223415, 15.13442108095035478827634090345, 15.68404722587069803021149026244, 16.67988655805180214260707632591, 16.99914439061423052117911757443, 18.34748335722527069287079891043, 18.81424358596675125616153898977, 19.51937529157729021900311316249, 20.37172901327591434577930004308, 21.01899510076756564274373869027