| L(s) = 1 | + (−0.433 − 0.900i)5-s + (0.623 + 0.781i)7-s + (−0.974 + 0.222i)11-s + (0.974 − 0.222i)13-s − 17-s + (−0.781 − 0.623i)19-s + (0.900 + 0.433i)23-s + (−0.623 + 0.781i)25-s + (0.900 − 0.433i)31-s + (0.433 − 0.900i)35-s + (0.974 + 0.222i)37-s + 41-s + (0.433 − 0.900i)43-s + (−0.222 − 0.974i)47-s + (−0.222 + 0.974i)49-s + ⋯ |
| L(s) = 1 | + (−0.433 − 0.900i)5-s + (0.623 + 0.781i)7-s + (−0.974 + 0.222i)11-s + (0.974 − 0.222i)13-s − 17-s + (−0.781 − 0.623i)19-s + (0.900 + 0.433i)23-s + (−0.623 + 0.781i)25-s + (0.900 − 0.433i)31-s + (0.433 − 0.900i)35-s + (0.974 + 0.222i)37-s + 41-s + (0.433 − 0.900i)43-s + (−0.222 − 0.974i)47-s + (−0.222 + 0.974i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1392 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.743 - 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1392 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.743 - 0.669i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.276116058 - 0.4899579037i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.276116058 - 0.4899579037i\) |
| \(L(1)\) |
\(\approx\) |
\(1.018404986 - 0.1323562790i\) |
| \(L(1)\) |
\(\approx\) |
\(1.018404986 - 0.1323562790i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (-0.433 - 0.900i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (-0.974 + 0.222i)T \) |
| 13 | \( 1 + (0.974 - 0.222i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + (-0.781 - 0.623i)T \) |
| 23 | \( 1 + (0.900 + 0.433i)T \) |
| 31 | \( 1 + (0.900 - 0.433i)T \) |
| 37 | \( 1 + (0.974 + 0.222i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (0.433 - 0.900i)T \) |
| 47 | \( 1 + (-0.222 - 0.974i)T \) |
| 53 | \( 1 + (-0.433 - 0.900i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (-0.781 + 0.623i)T \) |
| 67 | \( 1 + (0.974 + 0.222i)T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (0.900 + 0.433i)T \) |
| 79 | \( 1 + (0.222 - 0.974i)T \) |
| 83 | \( 1 + (0.781 + 0.623i)T \) |
| 89 | \( 1 + (-0.900 + 0.433i)T \) |
| 97 | \( 1 + (0.623 - 0.781i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.129417195967792496395259631035, −20.11659074157457614026321499912, −19.35446378058452819651468461497, −18.544849782349371812465683249992, −18.030763853442942200784120762927, −17.212584525605981918855489114612, −16.247482509133587102200679624457, −15.57199619197724014449153119663, −14.80400037587668626167812516783, −14.060273704265685227276295302439, −13.36884701794983302387558229128, −12.539540078258850498054574051223, −11.28609638675936164629111408097, −10.88940796762310086935708068911, −10.44241987459182784921898536650, −9.18484812832596769815688139504, −8.12786268314858761269349387396, −7.72749161206985124787973955002, −6.65537726682260892669926120745, −6.088648957562359995108673413614, −4.71052242403049992105406248394, −4.123032040492788755372275559403, −3.09455786051824967482501300702, −2.22982206977836277373284346039, −0.936404014264044621807230953352,
0.66732223634310904580152948770, 1.897133224314289440830534054333, 2.74369783386844453654763136561, 4.03105250233052712930803414216, 4.812364845204946219917074530445, 5.450069611090399278912394472655, 6.42495434450277785527567527257, 7.57740367756346046055810142154, 8.40198483562864405317033225106, 8.77194680923759998716345158139, 9.724398366461936385278665587467, 11.05666561514466285447310708716, 11.26529130511801798832263743701, 12.40572020824272140892390251327, 13.04068706706542229714689670436, 13.59591520652989613727133853229, 14.936273840545622936009022377381, 15.51222787784485745814097774552, 15.91282777418797075921653890881, 17.04411022777358242337523872595, 17.69717580597717206072937844315, 18.43627503014377578275634397543, 19.21798219753300901451427799170, 20.0497621838953382594988817167, 20.901201779619689321586781449994