| L(s) = 1 | + (−0.939 − 0.342i)5-s − 7-s + (0.5 − 0.866i)11-s + (−0.173 + 0.984i)13-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)23-s + (0.766 + 0.642i)25-s + (0.173 − 0.984i)29-s + (0.5 + 0.866i)31-s + (0.939 + 0.342i)35-s − 37-s + (−0.766 + 0.642i)41-s + (0.766 − 0.642i)43-s + (0.173 − 0.984i)47-s + 49-s + ⋯ |
| L(s) = 1 | + (−0.939 − 0.342i)5-s − 7-s + (0.5 − 0.866i)11-s + (−0.173 + 0.984i)13-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)23-s + (0.766 + 0.642i)25-s + (0.173 − 0.984i)29-s + (0.5 + 0.866i)31-s + (0.939 + 0.342i)35-s − 37-s + (−0.766 + 0.642i)41-s + (0.766 − 0.642i)43-s + (0.173 − 0.984i)47-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5885467655 - 0.4746176896i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5885467655 - 0.4746176896i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7534957371 - 0.08950212464i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7534957371 - 0.08950212464i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (-0.939 - 0.342i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.173 + 0.984i)T \) |
| 17 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (0.173 - 0.984i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (-0.766 + 0.642i)T \) |
| 43 | \( 1 + (0.766 - 0.642i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + (0.173 - 0.984i)T \) |
| 59 | \( 1 + (-0.173 - 0.984i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (0.173 + 0.984i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.173 - 0.984i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.939 - 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.752259928127068870251244667522, −20.14854649824890912765677770969, −19.558647159235574847352727755809, −18.87513976791394890501685813271, −18.05309469760311065641970120740, −17.23408109088431397156464004849, −16.35597350222525250241645322215, −15.55721811039648196803960973435, −15.16040078457614062284331326462, −14.25273484860708781408209803146, −13.20495306208309794541611987540, −12.49100246770385846693953097632, −11.93409834229537567572776504647, −10.88009349468074333478853691568, −10.26266567963319709872469708296, −9.29757932698073556860344000219, −8.57741185047933309475944020153, −7.39764714633480076346017283572, −7.00717523358651759294834240650, −6.10903321144869610068709824689, −4.89353572311216822891688263906, −4.12435775951456601083980566433, −3.15392109098341076717078754254, −2.51362799196881389694341573839, −0.88286160982774527202882991942,
0.3858255541244019375360621648, 1.67672874781976562692652878770, 3.03667213343647979007750523446, 3.743892220244566929703023756011, 4.478342120969883479943783999214, 5.60063713104133019258447972105, 6.65089078056092477976903784424, 7.0739639067158783442957962221, 8.39332002725553871803245254513, 8.825660312015900445343691267187, 9.70181068387095923678488008556, 10.72260761408567366513297417028, 11.58418705350410449855738908002, 12.08224834662026676069609842931, 13.075050577517661382598933672946, 13.65699409382386613696093096655, 14.66687360511359110838596533047, 15.58615849894228193835671670932, 16.04770253734994578885747449055, 16.83937653066406833734633105727, 17.441029694993242194205107376267, 18.88643084125936876278957441353, 19.19158809299772617046437071587, 19.67781760144929348420939552940, 20.61121696736037522247434024316