| L(s) = 1 | + (0.5 + 0.866i)5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s − 13-s + (−0.5 + 0.866i)17-s + 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + (0.5 − 0.866i)35-s − 37-s + (−0.5 − 0.866i)41-s − 43-s + (−0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s − 13-s + (−0.5 + 0.866i)17-s + 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s + (0.5 − 0.866i)35-s − 37-s + (−0.5 − 0.866i)41-s − 43-s + (−0.5 + 0.866i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4150665642 + 0.8473387740i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4150665642 + 0.8473387740i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9091898446 + 0.2457937050i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9091898446 + 0.2457937050i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.618038749342028243319601084891, −19.754790376355429377810747549713, −19.19840934933944915013802577161, −18.285049976514161347253445472437, −17.55624547502664490505151175816, −16.53682055558378979604963108492, −16.36226597438435790487962346465, −15.23308321066840489879837648071, −14.53613700648350162511514416057, −13.471675642251119248764713724474, −13.03885216623855719850737476175, −12.02363370075501039099106368823, −11.61696320176330061884399349205, −10.363235951869052809019744918269, −9.457828127766789560251082537548, −8.98452684570147418787656023069, −8.298119114757725920771690797624, −7.0197086426307664213330244346, −6.29527485312490391762387203551, −5.25923465441104693238470117594, −4.89118867078897393262037972227, −3.49756456121823600295447880172, −2.6229545594380529319154285961, −1.655197620421106802025928170744, −0.34720740553128091650662331113,
1.42175146593250448395857283947, 2.37217545786619454478635284329, 3.32875562121847939564108620683, 4.207436649967280686464307907, 5.149123947950982974317247485319, 6.32730419068525666869327972334, 6.95987050812091473897078758201, 7.42727942148654703822905279249, 8.73987300777365362871481059238, 9.69115749190262718433232680035, 10.237009671684132874883229280285, 10.86082427278957134193982270566, 11.92056175974047296522621784426, 12.76143075221031991814850490850, 13.51049859421836863903016933737, 14.32195962181258148287529379856, 14.92621778142091632111486961084, 15.65678734761183754152442293188, 16.90587325349939831751395561533, 17.2956662456813655724338919488, 17.90443241530019696165824412534, 19.08829695365267500011725602626, 19.49121295625580481376208577925, 20.27181332634753752112448663534, 21.1940201451709663040560477724