| L(s) = 1 | + (−0.939 − 0.342i)5-s − 7-s + (0.5 − 0.866i)11-s + (0.173 − 0.984i)13-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)23-s + (0.766 + 0.642i)25-s + (−0.173 + 0.984i)29-s + (−0.5 − 0.866i)31-s + (0.939 + 0.342i)35-s + 37-s + (0.766 − 0.642i)41-s + (0.766 − 0.642i)43-s + (0.173 − 0.984i)47-s + 49-s + ⋯ |
| L(s) = 1 | + (−0.939 − 0.342i)5-s − 7-s + (0.5 − 0.866i)11-s + (0.173 − 0.984i)13-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)23-s + (0.766 + 0.642i)25-s + (−0.173 + 0.984i)29-s + (−0.5 − 0.866i)31-s + (0.939 + 0.342i)35-s + 37-s + (0.766 − 0.642i)41-s + (0.766 − 0.642i)43-s + (0.173 − 0.984i)47-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4731856533 - 0.8733377338i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4731856533 - 0.8733377338i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7861667824 - 0.1651390423i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7861667824 - 0.1651390423i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (-0.939 - 0.342i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.173 - 0.984i)T \) |
| 17 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.173 + 0.984i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.766 - 0.642i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + (-0.173 + 0.984i)T \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.939 + 0.342i)T \) |
| 97 | \( 1 + (0.939 + 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.77019296637017451231562390187, −20.039098668997990593221524958267, −19.37152591935795381120629220673, −18.86095926944738796734493327571, −17.99265328805626538625218639813, −17.064629304734602092225038680715, −16.11647063115879647086129262250, −15.83095200515433671951860692433, −14.777669983311035567010370677, −14.25284597200515002896842530012, −13.04835918343251201995620995075, −12.55153021886595109859020055926, −11.53746195100462880452584861095, −11.12152843938045748567717753992, −9.90944075405529159050896106150, −9.30631895788104511907345216993, −8.47354365309199498987537253282, −7.26991063139050135109778193147, −6.87631677924568511581664319152, −6.08918118859740926538208438076, −4.58317917215155546372944627314, −4.16633825622745071556171345085, −3.10288381448854276446635250201, −2.26821601958788036123892469384, −0.8338935074893167704659425484,
0.2850202606655165812672337569, 1.06004871331408725757521541707, 2.63353168520036439440695640222, 3.56310503467408389590735369471, 4.02890514418155879933798174775, 5.3380752286029971950662922234, 6.077555875949423686609361510832, 7.04199893520773531734298637708, 7.815787937951987515115350271749, 8.80422859405198059130696785797, 9.224623838898409004318718869651, 10.50646913898909833372202964489, 11.08661369827411729260351711860, 11.94539347535273303753733720956, 12.93357270080239321812775051243, 13.1432326047955985664377839999, 14.372214442493616960492176229607, 15.34678678158481445918978640898, 15.72464434570616432700710179954, 16.63478160050642167980126612181, 17.1358794647792817437889241483, 18.31720574548453355458233472134, 19.03422308224235258259991305996, 19.768382291306704262447785985813, 20.07198177633981190719216729207