| L(s) = 1 | − 5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)17-s + (−0.5 − 0.866i)23-s + 25-s − 29-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)35-s − 37-s + 41-s + (0.5 − 0.866i)43-s + 47-s + (−0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | − 5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)17-s + (−0.5 − 0.866i)23-s + 25-s − 29-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)35-s − 37-s + 41-s + (0.5 − 0.866i)43-s + 47-s + (−0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03984451536 + 0.1609776608i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.03984451536 + 0.1609776608i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7049365465 + 0.007649069320i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7049365465 + 0.007649069320i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 - T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.33805667518492519175175881439, −19.72409165614498160144707594897, −19.02573018083179425161857826315, −18.50695025734717086749451818072, −17.50610031199499205074044110197, −16.62417124264156023338579505020, −15.79409728748277046124036955050, −15.38695775774420850109017312688, −14.62648274149219163854496506426, −13.52250929588814411069436377986, −12.76320852048508116816180145722, −12.08793790738842056160511398306, −11.22981696745396955254345548439, −10.71111698680696081495595764504, −9.43367827384889587733183832941, −8.76228417564756142400837511025, −8.05455990446194709064833188934, −7.22893683050576882096862232929, −5.988303913087701330760467717861, −5.7109543970742828109284468010, −4.244629522895828105553767374694, −3.565973016925054631619478721561, −2.80065457656948551467383627689, −1.47169186010714376687113088361, −0.06914035860307639177162394083,
1.24628893829255376288044211894, 2.46484887518543962642159051454, 3.754903656295033969463565350919, 4.09957110922230538574905173277, 5.014951545129585210559159397367, 6.43562399923214310756256450350, 7.05943683757864975708222302759, 7.60154079561616636434880795889, 8.81405672302420407181265568016, 9.36715373490099164950480141664, 10.488247164316427610876717340418, 11.08946907758827643671924001413, 12.03147461101139509179388992783, 12.55575540530996498068953421707, 13.628307167288036318545294764, 14.2629874831633082972242148158, 15.1353563473377018978690539665, 16.03137891347336253093132841769, 16.434214616368626745680389209209, 17.311713308045400422631982364739, 18.24868953591588535727616866832, 19.00461781016286862937554271926, 19.75028595751560633439619472284, 20.32347212938602692339557038323, 20.88932961866355687213160034854