| L(s) = 1 | + (0.766 + 0.642i)5-s + (0.5 − 0.866i)7-s − 11-s + (0.766 − 0.642i)13-s + (−0.766 − 0.642i)17-s + (−0.939 − 0.342i)23-s + (0.173 + 0.984i)25-s + (0.939 + 0.342i)29-s + 31-s + (0.939 − 0.342i)35-s + 37-s + (0.173 − 0.984i)41-s + (−0.939 + 0.342i)43-s + (−0.939 − 0.342i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
| L(s) = 1 | + (0.766 + 0.642i)5-s + (0.5 − 0.866i)7-s − 11-s + (0.766 − 0.642i)13-s + (−0.766 − 0.642i)17-s + (−0.939 − 0.342i)23-s + (0.173 + 0.984i)25-s + (0.939 + 0.342i)29-s + 31-s + (0.939 − 0.342i)35-s + 37-s + (0.173 − 0.984i)41-s + (−0.939 + 0.342i)43-s + (−0.939 − 0.342i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.730 - 0.683i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.730 - 0.683i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4509533235 - 1.141853814i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4509533235 - 1.141853814i\) |
| \(L(1)\) |
\(\approx\) |
\(1.087342787 - 0.1490475987i\) |
| \(L(1)\) |
\(\approx\) |
\(1.087342787 - 0.1490475987i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (0.766 - 0.642i)T \) |
| 17 | \( 1 + (-0.766 - 0.642i)T \) |
| 23 | \( 1 + (-0.939 - 0.342i)T \) |
| 29 | \( 1 + (0.939 + 0.342i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + (-0.173 - 0.984i)T \) |
| 59 | \( 1 + (-0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 + (-0.939 + 0.342i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.173 + 0.984i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.17236397935551272520013854525, −20.33280181539954574160941266697, −19.47218043807652809539368127708, −18.42482467717539956308664607231, −18.019600244816433990252510002742, −17.30089619023247293489200272485, −16.304044624766469718970805984263, −15.707787553688748303393467878586, −14.943541601586156958596612648811, −13.860979124678011851940663531625, −13.391366611460304897044173266965, −12.53626026879873959564253967936, −11.76676170247356679811658481330, −10.90925925994850647321487605753, −10.00871520548034422509564437837, −9.220565107152399716071103243459, −8.38878866439827938602011496364, −7.94977181343526354621169033434, −6.32670791342327634777088410599, −6.021667118012428385390309536176, −4.92113251468197216321324924062, −4.37315584863164199406205972035, −2.893944359316743591777612931398, −2.052540720757795583761022902799, −1.29232722260136744489728607811,
0.218653910338166797125506432849, 1.37104970240759811609361730191, 2.43663112924168335226517464071, 3.20279336758973997447192373286, 4.374755555656500706409082642451, 5.19460791975796115901825007467, 6.1608266309944334947078913049, 6.87796201929661662901402460539, 7.82825373662223337523592973292, 8.47614235247348664815841402064, 9.707212067910739838190989287494, 10.40724591108114713910707046339, 10.8505991750535443899105889490, 11.74136058201760667126024027820, 12.99514477562428098099977596152, 13.55994739450182336397901524453, 14.08345038041889873898634416028, 15.015908116967024527337499464943, 15.81386445362534224452016508241, 16.57938325691106180158890529333, 17.74054160484285345739280018492, 17.9028518469353820071457982728, 18.61993572592999785387762964681, 19.78068320666714859407048418584, 20.45956845571375157950880800700