| L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s − 17-s + (−0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s − 35-s + 37-s + (−0.5 − 0.866i)41-s + (−0.5 + 0.866i)43-s + (−0.5 + 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s − 17-s + (−0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 − 0.866i)31-s − 35-s + 37-s + (−0.5 − 0.866i)41-s + (−0.5 + 0.866i)43-s + (−0.5 + 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4158655769 - 0.8918266077i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.4158655769 - 0.8918266077i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7713756693 - 0.4615380416i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7713756693 - 0.4615380416i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 - T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.47800449716979643132196385957, −20.10013374024283052036397846234, −19.736396718181295147335756598215, −18.83249115624790311754875769380, −18.05990059161750873053961017054, −17.66812265492926135052223759455, −16.53163344447482616696886897961, −15.65901525833750581361054875926, −14.96749916687454063316152554257, −14.52270392104097029589277453288, −13.648126739175591252594666526428, −12.467858130530924527467314708696, −11.80095057422049298400143409778, −11.319629761720719524769657831936, −10.33490607437288473718368460595, −9.42480972113514200874018135336, −8.70639860273912062068558817915, −7.713914256530541139515868860979, −6.92346135142092416585810695749, −6.31877005901563365707570821595, −5.065210601342331134453480875059, −4.36327382359309364668048227517, −3.351728527686050486886968830145, −2.29755444505600439967309712385, −1.64210562685548442633627323964,
0.23386375831701832532653213706, 0.80210758007980514261522422372, 1.987246229125660931945203490, 3.26378063851439110789059645255, 4.239674884471773563227311612293, 4.72645520899439805820508455923, 5.82306674846093702448440721941, 6.73694214957814760597411234162, 7.91281000757203474752749686221, 8.1679017210543131577103545974, 9.19085319510835997125573108759, 10.06599082017791341850447806818, 11.09288814536402472814585741415, 11.52562408076072027860282251679, 12.60234007667367181642246276718, 13.206674110204882408343706389646, 14.03229877508594724609100754473, 14.831259953181898514349661356068, 15.732075128104548019549898441586, 16.43521622502016871610799736602, 17.1652492901337241458283405006, 17.66881017151177472738006307599, 18.78977021830569945702800860489, 19.63092445983244161972891120233, 20.2229716567785433290093493551