L(s) = 1 | + (−0.797 + 0.603i)2-s + (0.270 − 0.962i)4-s + (−0.0249 − 0.999i)5-s + (0.365 + 0.930i)8-s + (0.623 + 0.781i)10-s + (−0.797 + 0.603i)11-s + (0.542 − 0.840i)13-s + (−0.853 − 0.521i)16-s + (−0.900 + 0.433i)17-s + 19-s + (−0.969 − 0.246i)20-s + (0.270 − 0.962i)22-s + (0.698 + 0.715i)23-s + (−0.998 + 0.0498i)25-s + (0.0747 + 0.997i)26-s + ⋯ |
L(s) = 1 | + (−0.797 + 0.603i)2-s + (0.270 − 0.962i)4-s + (−0.0249 − 0.999i)5-s + (0.365 + 0.930i)8-s + (0.623 + 0.781i)10-s + (−0.797 + 0.603i)11-s + (0.542 − 0.840i)13-s + (−0.853 − 0.521i)16-s + (−0.900 + 0.433i)17-s + 19-s + (−0.969 − 0.246i)20-s + (0.270 − 0.962i)22-s + (0.698 + 0.715i)23-s + (−0.998 + 0.0498i)25-s + (0.0747 + 0.997i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9204071512 - 0.1923286920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9204071512 - 0.1923286920i\) |
\(L(1)\) |
\(\approx\) |
\(0.7430658896 + 0.01166850913i\) |
\(L(1)\) |
\(\approx\) |
\(0.7430658896 + 0.01166850913i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.797 + 0.603i)T \) |
| 5 | \( 1 + (-0.0249 - 0.999i)T \) |
| 11 | \( 1 + (-0.797 + 0.603i)T \) |
| 13 | \( 1 + (0.542 - 0.840i)T \) |
| 17 | \( 1 + (-0.900 + 0.433i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.698 + 0.715i)T \) |
| 29 | \( 1 + (0.698 - 0.715i)T \) |
| 31 | \( 1 + (0.173 + 0.984i)T \) |
| 37 | \( 1 + (0.0747 - 0.997i)T \) |
| 41 | \( 1 + (-0.853 + 0.521i)T \) |
| 43 | \( 1 + (0.878 - 0.478i)T \) |
| 47 | \( 1 + (0.921 + 0.388i)T \) |
| 53 | \( 1 + (0.826 - 0.563i)T \) |
| 59 | \( 1 + (-0.318 - 0.947i)T \) |
| 61 | \( 1 + (0.270 + 0.962i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.0747 + 0.997i)T \) |
| 73 | \( 1 + (-0.733 + 0.680i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.542 + 0.840i)T \) |
| 89 | \( 1 + (-0.222 - 0.974i)T \) |
| 97 | \( 1 + (0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.82648462492562994016851246301, −20.2645235784907427942313476281, −19.231067495964312104875526583616, −18.630464783374139380810054919959, −18.26790557020069798237017909442, −17.42308407913907094067320621319, −16.43277529276468516326899762126, −15.84391770576049966557274597768, −15.02953452814614991769446903052, −13.71894954075643693094069383354, −13.50319521690798906291458581779, −12.1998394462545258118063146487, −11.4433151703465675625520753713, −10.86710162810939215424483821296, −10.24641285265777707525119493260, −9.26542173701717125976147740846, −8.573727987821889518984158530509, −7.61536477604425676361859252755, −6.907780962173183012806180129419, −6.14565859733422741178608338441, −4.76565081454081142991258064017, −3.6775749110982082966855626639, −2.86194579423893410678362286656, −2.21208449600053939911828530254, −0.8771014845470023003136237843,
0.65437589816130574626243168827, 1.5942692446316762548144767408, 2.70542003208385434753367492472, 4.15057613089196990608754560028, 5.206603893086971132913661778452, 5.585734717011947292877666284357, 6.77106986760729891411224502825, 7.64451124195187987967548467525, 8.309797031906410499070496783581, 9.01366229937692011718836385222, 9.821096740829113694776771527366, 10.57678620313374100597267037402, 11.43168758141027024923174155066, 12.47133068991544572167592738993, 13.262847705483681645535985528854, 13.96565624184210664017894063514, 15.23388392208217248298980315654, 15.666562127989298726542286935419, 16.18953453216490207643353717521, 17.33908448876762283939361755950, 17.63369517031623559192763362847, 18.39375953949472207020680598031, 19.44020517269369854180374153706, 20.04452001045281917429264039858, 20.63366707237983034714127996124