L(s) = 1 | + (−0.661 + 0.749i)2-s + (−0.124 − 0.992i)4-s + (0.969 + 0.246i)5-s + (0.826 + 0.563i)8-s + (−0.826 + 0.563i)10-s + (0.980 + 0.198i)11-s + (−0.878 + 0.478i)13-s + (−0.969 + 0.246i)16-s + (−0.955 − 0.294i)17-s + (0.5 + 0.866i)19-s + (0.124 − 0.992i)20-s + (−0.797 + 0.603i)22-s + (−0.124 − 0.992i)23-s + (0.878 + 0.478i)25-s + (0.222 − 0.974i)26-s + ⋯ |
L(s) = 1 | + (−0.661 + 0.749i)2-s + (−0.124 − 0.992i)4-s + (0.969 + 0.246i)5-s + (0.826 + 0.563i)8-s + (−0.826 + 0.563i)10-s + (0.980 + 0.198i)11-s + (−0.878 + 0.478i)13-s + (−0.969 + 0.246i)16-s + (−0.955 − 0.294i)17-s + (0.5 + 0.866i)19-s + (0.124 − 0.992i)20-s + (−0.797 + 0.603i)22-s + (−0.124 − 0.992i)23-s + (0.878 + 0.478i)25-s + (0.222 − 0.974i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.143 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.143 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.442593300 + 1.248924143i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.442593300 + 1.248924143i\) |
\(L(1)\) |
\(\approx\) |
\(0.9070982961 + 0.3722729371i\) |
\(L(1)\) |
\(\approx\) |
\(0.9070982961 + 0.3722729371i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.661 + 0.749i)T \) |
| 5 | \( 1 + (0.969 + 0.246i)T \) |
| 11 | \( 1 + (0.980 + 0.198i)T \) |
| 13 | \( 1 + (-0.878 + 0.478i)T \) |
| 17 | \( 1 + (-0.955 - 0.294i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.124 - 0.992i)T \) |
| 29 | \( 1 + (0.921 - 0.388i)T \) |
| 31 | \( 1 + (0.939 - 0.342i)T \) |
| 37 | \( 1 + (0.955 + 0.294i)T \) |
| 41 | \( 1 + (-0.270 - 0.962i)T \) |
| 43 | \( 1 + (-0.969 + 0.246i)T \) |
| 47 | \( 1 + (0.318 + 0.947i)T \) |
| 53 | \( 1 + (-0.222 + 0.974i)T \) |
| 59 | \( 1 + (0.411 + 0.911i)T \) |
| 61 | \( 1 + (0.124 - 0.992i)T \) |
| 67 | \( 1 + (0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.733 - 0.680i)T \) |
| 73 | \( 1 + (0.988 + 0.149i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.878 - 0.478i)T \) |
| 89 | \( 1 + (0.988 + 0.149i)T \) |
| 97 | \( 1 + (-0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.352661514076674941529558583817, −19.80781833111743535545202982178, −19.30740221945842414517684286441, −18.02856766196033370832776010836, −17.69052856101331247770625678036, −17.07892888466739941026531617076, −16.30674463269168753356177523759, −15.2965456995259661941684608392, −14.22858752939515850926169591657, −13.43093243727181777704395198074, −12.88179107234840982869006483218, −11.87149454041227587307681905877, −11.32290138043366357856002053932, −10.20678330956410687785619311218, −9.74107552222936005284453719269, −8.953449753109471938894662714861, −8.3084064445705267585990575698, −7.10722331484356386001427425116, −6.45503087826110433156790872575, −5.193865704831042335694402259977, −4.39801665646035524428902090338, −3.208940336357551295068499150006, −2.402735173424677465897257692887, −1.48090377136801448995034856665, −0.599446701625115350676078953,
0.821583914847270930814765598892, 1.84035121593476744216123951241, 2.64306486481248565424354970002, 4.303496168838813025899959997837, 4.986269802178288467904576645081, 6.1944336831238767211218189671, 6.505715665496951489732215767936, 7.39264148117746345030127114964, 8.4167906602769477588313440825, 9.271342644776876988913131240822, 9.78645422027566925760035532878, 10.49153709165460462507166335262, 11.50807277582265297003023825880, 12.40892892242178800543318021127, 13.660992601502801865719684624808, 14.12412051905041720842477588358, 14.77891456396694592220681281921, 15.60788563500521854437695146550, 16.675796087084971435314667580335, 17.04215410517119308895150431227, 17.803579695930156881428165716, 18.46319678056078443850578008685, 19.23728871781940293713486289152, 20.02667915585685342980721458638, 20.769569487534819338313172246368