L(s) = 1 | + (−0.980 + 0.198i)2-s + (0.921 − 0.388i)4-s + (−0.969 + 0.246i)5-s + (−0.826 + 0.563i)8-s + (0.900 − 0.433i)10-s + (−0.980 + 0.198i)11-s + (0.853 − 0.521i)13-s + (0.698 − 0.715i)16-s + (−0.222 + 0.974i)17-s − 19-s + (−0.797 + 0.603i)20-s + (0.921 − 0.388i)22-s + (0.124 − 0.992i)23-s + (0.878 − 0.478i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
L(s) = 1 | + (−0.980 + 0.198i)2-s + (0.921 − 0.388i)4-s + (−0.969 + 0.246i)5-s + (−0.826 + 0.563i)8-s + (0.900 − 0.433i)10-s + (−0.980 + 0.198i)11-s + (0.853 − 0.521i)13-s + (0.698 − 0.715i)16-s + (−0.222 + 0.974i)17-s − 19-s + (−0.797 + 0.603i)20-s + (0.921 − 0.388i)22-s + (0.124 − 0.992i)23-s + (0.878 − 0.478i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5842852517 + 0.04204246645i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5842852517 + 0.04204246645i\) |
\(L(1)\) |
\(\approx\) |
\(0.5477401973 + 0.05252333135i\) |
\(L(1)\) |
\(\approx\) |
\(0.5477401973 + 0.05252333135i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.980 + 0.198i)T \) |
| 5 | \( 1 + (-0.969 + 0.246i)T \) |
| 11 | \( 1 + (-0.980 + 0.198i)T \) |
| 13 | \( 1 + (0.853 - 0.521i)T \) |
| 17 | \( 1 + (-0.222 + 0.974i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.124 - 0.992i)T \) |
| 29 | \( 1 + (0.124 + 0.992i)T \) |
| 31 | \( 1 + (-0.173 - 0.984i)T \) |
| 37 | \( 1 + (-0.733 - 0.680i)T \) |
| 41 | \( 1 + (0.698 + 0.715i)T \) |
| 43 | \( 1 + (0.270 + 0.962i)T \) |
| 47 | \( 1 + (-0.661 - 0.749i)T \) |
| 53 | \( 1 + (-0.955 - 0.294i)T \) |
| 59 | \( 1 + (0.995 - 0.0995i)T \) |
| 61 | \( 1 + (-0.921 - 0.388i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.733 - 0.680i)T \) |
| 73 | \( 1 + (-0.365 + 0.930i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (-0.853 - 0.521i)T \) |
| 89 | \( 1 + (0.623 + 0.781i)T \) |
| 97 | \( 1 + (-0.173 + 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.93791694332340651595878220049, −20.058823626667953614883185900762, −19.155652575893075905068455299652, −18.87757413672297708228225157208, −17.963078361287221265727532582409, −17.201542650015207370257900083886, −16.24638321194615785972962949850, −15.76309396490994185965274099686, −15.28599405964388578353913785708, −13.97505333877415547304416064679, −13.02356827407566842851831998898, −12.223821484724213879622015559301, −11.38051577492697384929759443121, −10.93879234999281514213779147029, −10.01827050308452898417351871675, −8.96320764197123653091494814273, −8.47366797757524298464347048347, −7.62779892095996126417465927620, −6.979693753630802457937879218913, −5.95181855896842111307074373690, −4.783876701718878193445448490265, −3.73137621685451496086756887208, −2.91279570314248373833067428922, −1.819388675994978715044256619479, −0.61504375848394145376436937889,
0.5590831496014236110675297942, 1.91292547988543014145433738065, 2.889479019091222851219908925019, 3.85468891311321886901032043362, 4.99595582085372552376140239095, 6.13964188559732166441600240784, 6.77611396938825894300003863104, 7.89080125163474322019577400099, 8.19108077044980796901518588015, 9.000077772826642808818949142632, 10.23046141936666903663564177272, 10.809440811311902106710981266811, 11.24488379241504799357439410229, 12.5157315912217612331358257005, 12.93807808585941766433924053737, 14.48080184145169748754685147582, 15.04909326162475832800242368343, 15.7445666120861996349230270391, 16.31538603607324664322856037912, 17.186745577217313978793889046704, 18.13697624038018191615614317852, 18.556415795168499095620194363302, 19.378570794589664968050679512914, 19.98633848957922266502855795771, 20.76674819285730970999071850910