| L(s) = 1 | + (−0.587 − 0.809i)3-s − i·7-s + (−0.309 + 0.951i)9-s + (0.309 + 0.951i)11-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.809 − 0.587i)21-s + (−0.951 + 0.309i)23-s + (0.951 − 0.309i)27-s + (0.809 − 0.587i)29-s + (−0.809 − 0.587i)31-s + (0.587 − 0.809i)33-s + (−0.951 − 0.309i)37-s + (−0.309 + 0.951i)41-s − i·43-s + ⋯ |
| L(s) = 1 | + (−0.587 − 0.809i)3-s − i·7-s + (−0.309 + 0.951i)9-s + (0.309 + 0.951i)11-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.809 − 0.587i)21-s + (−0.951 + 0.309i)23-s + (0.951 − 0.309i)27-s + (0.809 − 0.587i)29-s + (−0.809 − 0.587i)31-s + (0.587 − 0.809i)33-s + (−0.951 − 0.309i)37-s + (−0.309 + 0.951i)41-s − i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.125 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.125 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6704309691 + 0.5910644073i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6704309691 + 0.5910644073i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8304606543 + 0.05491719803i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8304606543 + 0.05491719803i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.587 - 0.809i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.951 + 0.309i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.951 - 0.309i)T \) |
| 41 | \( 1 + (-0.309 + 0.951i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.587 + 0.809i)T \) |
| 59 | \( 1 + (-0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.309 + 0.951i)T \) |
| 67 | \( 1 + (0.587 - 0.809i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.951 + 0.309i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.587 + 0.809i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.587 + 0.809i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.82453248592034857235575644708, −20.15816255918617310592099780650, −19.43428839002832102055083916205, −18.435546595755663208257992452232, −17.4520173443964557733421741217, −17.06862682793102002212637733641, −16.06083766826622315981131670430, −15.88083008866052588271073902300, −14.45245233872312237618549672568, −14.17072016471564845350355866496, −13.097793008878563310153008865576, −12.09516438181759274790781302689, −11.406263738855320914893258604455, −10.493020566035218462882637212426, −10.19857311042511101530468267903, −9.08014990395752236353251445505, −8.334152648290963772449259343889, −7.196445241512116813620056605117, −6.38350708289071114988065021115, −5.52359501301145399745185616545, −4.70559863905717708028247423742, −3.67850640166234614020718612736, −3.28193379128015774543155792382, −1.51224126355646896199592448791, −0.40934838360352911272565701592,
1.2607343100241573183586757465, 2.09920181491166510219020457, 3.0134262094382854624602740068, 4.38150107668351623710731757410, 5.38115445236669160700606306021, 5.89576285230403754344681405859, 6.90175539626070582909662485366, 7.625553749239822801735816132797, 8.409678772326684504781920131871, 9.52969392890237111056641520473, 10.13497717484155793171851275716, 11.43593574402739500777256331175, 11.95725316533339129859400358878, 12.40358990762636951451387225672, 13.376618415766190975236745165743, 14.187296862950310640687212744513, 14.98927199701884514755652590955, 15.97276697911151936800418192753, 16.56247241137693822971166948142, 17.60233345840065689117451828049, 18.15657256293703151695400431045, 18.63887068140268460715973142004, 19.577343804761735680906445508512, 20.24861619370973195684755163673, 21.26471395963827827067842277920