L(s) = 1 | + (−0.207 − 0.978i)3-s + (0.866 + 0.5i)7-s + (−0.913 + 0.406i)9-s + (−0.913 − 0.406i)11-s + (0.207 − 0.978i)17-s + (−0.978 − 0.207i)19-s + (0.309 − 0.951i)21-s + (−0.406 + 0.913i)23-s + (0.587 + 0.809i)27-s + (0.978 − 0.207i)29-s + (−0.309 − 0.951i)31-s + (−0.207 + 0.978i)33-s + (−0.994 − 0.104i)37-s + (−0.104 + 0.994i)41-s + (−0.866 − 0.5i)43-s + ⋯ |
L(s) = 1 | + (−0.207 − 0.978i)3-s + (0.866 + 0.5i)7-s + (−0.913 + 0.406i)9-s + (−0.913 − 0.406i)11-s + (0.207 − 0.978i)17-s + (−0.978 − 0.207i)19-s + (0.309 − 0.951i)21-s + (−0.406 + 0.913i)23-s + (0.587 + 0.809i)27-s + (0.978 − 0.207i)29-s + (−0.309 − 0.951i)31-s + (−0.207 + 0.978i)33-s + (−0.994 − 0.104i)37-s + (−0.104 + 0.994i)41-s + (−0.866 − 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.100i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1300 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.100i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02459011995 - 0.4881670338i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02459011995 - 0.4881670338i\) |
\(L(1)\) |
\(\approx\) |
\(0.7478215731 - 0.2990130222i\) |
\(L(1)\) |
\(\approx\) |
\(0.7478215731 - 0.2990130222i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.207 - 0.978i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.913 - 0.406i)T \) |
| 17 | \( 1 + (0.207 - 0.978i)T \) |
| 19 | \( 1 + (-0.978 - 0.207i)T \) |
| 23 | \( 1 + (-0.406 + 0.913i)T \) |
| 29 | \( 1 + (0.978 - 0.207i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.994 - 0.104i)T \) |
| 41 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.951 - 0.309i)T \) |
| 59 | \( 1 + (0.913 - 0.406i)T \) |
| 61 | \( 1 + (-0.104 - 0.994i)T \) |
| 67 | \( 1 + (-0.743 - 0.669i)T \) |
| 71 | \( 1 + (-0.669 - 0.743i)T \) |
| 73 | \( 1 + (0.587 + 0.809i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (-0.913 - 0.406i)T \) |
| 97 | \( 1 + (-0.743 + 0.669i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.11573860605772588674902594949, −20.93663237036764627826583126306, −20.025452460635812159112357629924, −19.23024994578425546553143070985, −18.03986085944656604378103201854, −17.560987837274500042078874834796, −16.76494487310853305285778094407, −16.06251818788423174752461019809, −15.19306070340426832860754689824, −14.6186574163154378234073119487, −13.925170291284396830588971664622, −12.7706825016390815882623920755, −12.055986187854497011460643308393, −10.98361924182780811002889398034, −10.44336708340501591551821818080, −10.01750195546287509685093498062, −8.51802416024852964480396829222, −8.37196146320033892992031563741, −7.10959879995661834231027093974, −6.1038370793586618051016383659, −5.12918328704337254484183967594, −4.53177336555853723467996711917, −3.74271362248599482624943198172, −2.625785985513345929408279188363, −1.50518282781607759658208734450,
0.18638180140631111491328638071, 1.56123598598296328435244105885, 2.33136029775851796986417997639, 3.22306815392967527522696852797, 4.75228312455742706456357513305, 5.37098299644800145055969828947, 6.216035428224000662525782620095, 7.15182849340058345984917467347, 8.06130835882216616319423995515, 8.401092947750986035272059811143, 9.563123054915081286044410375266, 10.69203712378984868304987123448, 11.43690129429411949745244201379, 11.971343513475278236718022843145, 12.91778037699427796413694106831, 13.59023963469538982696926036225, 14.2925772344364740548682549648, 15.19611764069382413649601884416, 16.01272243240313130442746785466, 16.97427004974481002793151774493, 17.738062279219040854392507800734, 18.29240691324942570156584883312, 18.91025155897139946375402231625, 19.68281928708302785669661838734, 20.6390576330992793161018355367