| L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.707 + 0.707i)7-s + (0.587 + 0.809i)8-s + (−0.891 + 0.453i)11-s + (0.309 + 0.951i)13-s + (0.453 + 0.891i)14-s + (0.309 + 0.951i)16-s + (−0.587 − 0.809i)19-s + (−0.987 + 0.156i)22-s + (0.891 − 0.453i)23-s + i·26-s + (0.156 + 0.987i)28-s + (−0.987 + 0.156i)29-s + (−0.156 + 0.987i)31-s + i·32-s + ⋯ |
| L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.707 + 0.707i)7-s + (0.587 + 0.809i)8-s + (−0.891 + 0.453i)11-s + (0.309 + 0.951i)13-s + (0.453 + 0.891i)14-s + (0.309 + 0.951i)16-s + (−0.587 − 0.809i)19-s + (−0.987 + 0.156i)22-s + (0.891 − 0.453i)23-s + i·26-s + (0.156 + 0.987i)28-s + (−0.987 + 0.156i)29-s + (−0.156 + 0.987i)31-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.972 + 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.972 + 0.232i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3719004761 + 3.150181198i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3719004761 + 3.150181198i\) |
| \(L(1)\) |
\(\approx\) |
\(1.582207815 + 0.9103737764i\) |
| \(L(1)\) |
\(\approx\) |
\(1.582207815 + 0.9103737764i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.951 + 0.309i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.891 + 0.453i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.587 - 0.809i)T \) |
| 23 | \( 1 + (0.891 - 0.453i)T \) |
| 29 | \( 1 + (-0.987 + 0.156i)T \) |
| 31 | \( 1 + (-0.156 + 0.987i)T \) |
| 37 | \( 1 + (-0.891 - 0.453i)T \) |
| 41 | \( 1 + (-0.453 + 0.891i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.587 - 0.809i)T \) |
| 59 | \( 1 + (-0.951 + 0.309i)T \) |
| 61 | \( 1 + (-0.891 + 0.453i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.987 - 0.156i)T \) |
| 73 | \( 1 + (-0.453 - 0.891i)T \) |
| 79 | \( 1 + (-0.156 - 0.987i)T \) |
| 83 | \( 1 + (-0.587 - 0.809i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.987 + 0.156i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.594790760547848664086991273528, −20.13794967137416997928584391040, −18.93124948887359847189516823647, −18.501968031088369547994416267386, −17.20356116122600278597422164077, −16.71795815511689420025928814351, −15.409318675744866346964629160513, −15.26099767159370166373322119448, −14.11484215667248572788114557099, −13.53797551361961617466563770876, −12.88284986999612770158454548969, −12.04019653219123743420216708891, −10.89851241792549532858056254299, −10.7779648922484025231519994757, −9.826693235761289614076538771525, −8.44533333533172861454986616518, −7.66840989139152511290120524, −6.90706588933351982501913221977, −5.60392206451154351155860227284, −5.347928619426189732021779541362, −4.12996737338058166936828066488, −3.49314857932661984981911697187, −2.43936394230381938332098880302, −1.44530477688536773669606958834, −0.38280884281577260550983224269,
1.60049884334685975485752933507, 2.36488215812257467580868821095, 3.26758570140446977390589224181, 4.55019195322749648538392471417, 4.92640940389654082492437015649, 5.87798728023573974288937330162, 6.79585458660322641252551568559, 7.53777343408119442645991353400, 8.49206522590019919884923190086, 9.18749209045578028125974112853, 10.6592415915704488331480076393, 11.159431063280265679568611551890, 12.03689913393812625790906844298, 12.760092655028360717703000807, 13.45900982485355069079297042775, 14.3850551671287607038854268530, 14.999752858629025744705043120820, 15.62693275546550207651625609609, 16.42394714163289790561124330532, 17.27075061791332267653704342874, 18.08595514431910991689554230679, 18.877319350535624122422283843454, 19.86477764032214609970432488201, 20.79110064111301023642092020299, 21.29902907063142064897934843721