| L(s) = 1 | + (−0.951 − 0.309i)2-s + (0.809 + 0.587i)4-s + 7-s + (−0.587 − 0.809i)8-s + (−0.951 − 0.309i)11-s + (−0.951 + 0.309i)13-s + (−0.951 − 0.309i)14-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)19-s + (0.809 + 0.587i)22-s + (0.309 − 0.951i)23-s + 26-s + (0.809 + 0.587i)28-s + (−0.587 + 0.809i)29-s + (0.587 + 0.809i)31-s − i·32-s + ⋯ |
| L(s) = 1 | + (−0.951 − 0.309i)2-s + (0.809 + 0.587i)4-s + 7-s + (−0.587 − 0.809i)8-s + (−0.951 − 0.309i)11-s + (−0.951 + 0.309i)13-s + (−0.951 − 0.309i)14-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)19-s + (0.809 + 0.587i)22-s + (0.309 − 0.951i)23-s + 26-s + (0.809 + 0.587i)28-s + (−0.587 + 0.809i)29-s + (0.587 + 0.809i)31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.456 - 0.889i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.456 - 0.889i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7164354459 - 0.4374695914i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7164354459 - 0.4374695914i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6935137244 - 0.1316379236i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6935137244 - 0.1316379236i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.951 - 0.309i)T \) |
| 13 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.587 + 0.809i)T \) |
| 31 | \( 1 + (0.587 + 0.809i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (0.951 - 0.309i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.587 - 0.809i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.951 + 0.309i)T \) |
| 67 | \( 1 + (0.587 + 0.809i)T \) |
| 71 | \( 1 + (0.587 - 0.809i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.587 + 0.809i)T \) |
| 83 | \( 1 + (-0.587 - 0.809i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.01672294940518277295284309751, −20.32945078269522701225856067028, −19.51243619899693615488341796508, −18.79412311663233407532455669911, −18.00885811360381589177673329878, −17.308942170026109582898393181786, −16.96268119193815877909603201203, −15.647740595120135661874670523891, −15.23776343938103086260248878269, −14.56269322931734989074098724176, −13.52160708252036176277568039893, −12.53459038009686498262502553063, −11.52100947456967690720096270124, −10.98710712255097957428970075443, −10.08748035594624981194773301866, −9.43429861760098481379025994252, −8.39030046093581212311240699815, −7.746440377692739929951110284744, −7.21732627163290069112290930398, −6.022563545502461977842020431355, −5.20136439978645723136437888979, −4.41747010182479996227767947755, −2.71931071792627233893826301417, −2.14728851688829575407993961968, −0.93554787700175185772778571487,
0.5436443816034383996967835394, 1.92333836634974556529788562340, 2.43923191435523843710992678810, 3.6621751295980486788824540198, 4.76529868606314840777845152454, 5.67261988961574228423965040321, 6.903539559311591654109324418687, 7.543745853393237460939405756010, 8.422247919847254156566114581383, 8.899069107939451541008139816201, 10.13589907507390602365760310169, 10.61858826544613554844454283329, 11.35411637914446711027760371501, 12.29369942675706725562918454908, 12.824466563508001230125958176459, 14.13381949725939144276817722439, 14.81128207125013537546688651125, 15.6841508905846260504191149971, 16.54333331263685557032303651228, 17.1805563383162826439771694510, 17.91554286334992514960215538691, 18.61273082261486679198694859611, 19.22415328335123023166477337138, 20.1230591902629837795392894061, 20.915362342212846906173141911319