| L(s) = 1 | + (0.5 + 0.866i)11-s + (0.866 − 0.5i)13-s + (0.866 + 0.5i)17-s + (0.5 + 0.866i)19-s + (−0.866 − 0.5i)23-s + (0.5 − 0.866i)29-s + 31-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (−0.866 − 0.5i)43-s − i·47-s + (0.866 + 0.5i)53-s − 59-s − 61-s − i·67-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)11-s + (0.866 − 0.5i)13-s + (0.866 + 0.5i)17-s + (0.5 + 0.866i)19-s + (−0.866 − 0.5i)23-s + (0.5 − 0.866i)29-s + 31-s + (0.866 − 0.5i)37-s + (0.5 + 0.866i)41-s + (−0.866 − 0.5i)43-s − i·47-s + (0.866 + 0.5i)53-s − 59-s − 61-s − i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.462965815 + 0.7637158636i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.462965815 + 0.7637158636i\) |
| \(L(1)\) |
\(\approx\) |
\(1.251276196 + 0.1149063966i\) |
| \(L(1)\) |
\(\approx\) |
\(1.251276196 + 0.1149063966i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.85732189655815574573287529568, −19.966756100056893462227492880972, −19.31080087507703789619078023445, −18.46012013313031384226161383332, −17.89092591025145270116896089354, −16.820603720351076666500110989531, −16.236492059573091700774054171110, −15.57024474204941450538753760257, −14.49604880859612264423486213956, −13.793410756726727916339550257740, −13.29873418094330836992121581427, −11.96469958054490253154564548341, −11.61683758343851130564841463008, −10.67258590234292703778281652222, −9.75509382912865477624423559385, −8.93201507793458369823905520994, −8.231004875439513182059886067003, −7.2296625006496471799921389128, −6.353188376196752153595546400629, −5.60874847556903128118048754554, −4.584367089283795593203272228109, −3.58652840184720450390452489896, −2.85723735010425352593854536785, −1.493812578141909761304931607804, −0.66491932882567108944946563760,
0.87778847591422283496554266781, 1.753869265921762966177080481561, 2.94391263406929386448340683617, 3.89994637786659642655458084870, 4.66075499322542993105198691569, 5.92341701562083852663190216808, 6.32409476776235536091501988913, 7.68151101216225475214979001103, 8.07847614027641362674722161586, 9.214806628994164983339665607821, 10.033515957559507443765145756179, 10.61340906736962107374516697281, 11.8363681444846826149839021525, 12.24733987992476404838456459739, 13.213056696168952465734920494739, 14.05540820025612111469940353413, 14.77621560492881989698148857592, 15.55453291439554629798880048888, 16.3745255736961983114287925116, 17.11069145482899776816495531104, 17.984140591476060167624327576840, 18.53241357713964269905352989041, 19.50701322545580219569792848527, 20.20462805260452478165401878116, 20.90425520850781557661612642867