L(s) = 1 | + (0.104 + 0.994i)3-s + (−0.5 − 0.866i)5-s + (0.978 + 0.207i)7-s + (−0.978 + 0.207i)9-s + (−0.669 + 0.743i)11-s + (0.913 + 0.406i)13-s + (0.809 − 0.587i)15-s + (0.669 + 0.743i)17-s + (−0.913 + 0.406i)19-s + (−0.104 + 0.994i)21-s + (−0.309 + 0.951i)23-s + (−0.5 + 0.866i)25-s + (−0.309 − 0.951i)27-s + (−0.809 − 0.587i)29-s + (−0.809 − 0.587i)33-s + ⋯ |
L(s) = 1 | + (0.104 + 0.994i)3-s + (−0.5 − 0.866i)5-s + (0.978 + 0.207i)7-s + (−0.978 + 0.207i)9-s + (−0.669 + 0.743i)11-s + (0.913 + 0.406i)13-s + (0.809 − 0.587i)15-s + (0.669 + 0.743i)17-s + (−0.913 + 0.406i)19-s + (−0.104 + 0.994i)21-s + (−0.309 + 0.951i)23-s + (−0.5 + 0.866i)25-s + (−0.309 − 0.951i)27-s + (−0.809 − 0.587i)29-s + (−0.809 − 0.587i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 124 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.570 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.570 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6104010297 + 1.167943328i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6104010297 + 1.167943328i\) |
\(L(1)\) |
\(\approx\) |
\(0.9169657584 + 0.4252706955i\) |
\(L(1)\) |
\(\approx\) |
\(0.9169657584 + 0.4252706955i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 \) |
good | 3 | \( 1 + (0.104 + 0.994i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.978 + 0.207i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (0.669 + 0.743i)T \) |
| 19 | \( 1 + (-0.913 + 0.406i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.913 + 0.406i)T \) |
| 47 | \( 1 + (0.809 - 0.587i)T \) |
| 53 | \( 1 + (-0.978 + 0.207i)T \) |
| 59 | \( 1 + (0.104 + 0.994i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.978 - 0.207i)T \) |
| 73 | \( 1 + (0.669 - 0.743i)T \) |
| 79 | \( 1 + (-0.669 - 0.743i)T \) |
| 83 | \( 1 + (0.104 - 0.994i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.35277084939429033208794992456, −27.29090492563209479897318164474, −26.25659123526528541077976491892, −25.34556678278594516246838630982, −24.076533139569370732258192752510, −23.51618992717337443604029957838, −22.53508204337087231437183411711, −21.08552912323197411434877074280, −20.11635168825046668676740282698, −18.700783172780995856149822420615, −18.46320170572926088639489907404, −17.26233785484280005818292080428, −15.80538168440963511006539236714, −14.53343525918811159300359434088, −13.83473072957877963199079098702, −12.57224276777410639168286478797, −11.28245056580573997046284331820, −10.71574251608929388406550986286, −8.552205597592647771206632302793, −7.81607714540388762430351973293, −6.74165734526002712328501705945, −5.44382094995878128183915946709, −3.55674718102853926666521430429, −2.25675924094266123163567107655, −0.53049461089081908012866234559,
1.7327332654484952372538785795, 3.748891211143886403796232681891, 4.687508419318709740110084127779, 5.71623045380840880603425815408, 7.910493963107565260722106863253, 8.57648360306701480906812280685, 9.85495978886230509362982982201, 11.057949790677211851215511427064, 12.0190639543647269407692204338, 13.38338343025951179504553665154, 14.82011670942790114587710901708, 15.48351255240715103165010820707, 16.58699275797961721336686120492, 17.47074387779589673486100071910, 18.90193858723990193236789415931, 20.24387138236918787368772114939, 20.92259472850418543759418817517, 21.57800195213155505390986522624, 23.213087207290831182124072046142, 23.74655905973341718391416417773, 25.1813310904740649440241094965, 26.06349361810255789099443136549, 27.27449266471419195614927249757, 28.05143600134678334607257382792, 28.45321845350186434347913817283