| L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.453 − 0.891i)7-s + (0.587 + 0.809i)8-s + (−0.809 + 0.587i)10-s + (0.987 + 0.156i)11-s + (−0.891 + 0.453i)13-s + (0.707 − 0.707i)14-s + (0.309 + 0.951i)16-s + (−0.156 + 0.987i)17-s + (−0.891 − 0.453i)19-s + (−0.951 + 0.309i)20-s + (0.891 + 0.453i)22-s + (0.309 − 0.951i)23-s + ⋯ |
| L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (−0.587 + 0.809i)5-s + (0.453 − 0.891i)7-s + (0.587 + 0.809i)8-s + (−0.809 + 0.587i)10-s + (0.987 + 0.156i)11-s + (−0.891 + 0.453i)13-s + (0.707 − 0.707i)14-s + (0.309 + 0.951i)16-s + (−0.156 + 0.987i)17-s + (−0.891 − 0.453i)19-s + (−0.951 + 0.309i)20-s + (0.891 + 0.453i)22-s + (0.309 − 0.951i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.646 + 0.762i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.646 + 0.762i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.579617716 + 0.7313896605i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.579617716 + 0.7313896605i\) |
| \(L(1)\) |
\(\approx\) |
\(1.578423360 + 0.4780563989i\) |
| \(L(1)\) |
\(\approx\) |
\(1.578423360 + 0.4780563989i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 41 | \( 1 \) |
| good | 2 | \( 1 + (0.951 + 0.309i)T \) |
| 5 | \( 1 + (-0.587 + 0.809i)T \) |
| 7 | \( 1 + (0.453 - 0.891i)T \) |
| 11 | \( 1 + (0.987 + 0.156i)T \) |
| 13 | \( 1 + (-0.891 + 0.453i)T \) |
| 17 | \( 1 + (-0.156 + 0.987i)T \) |
| 19 | \( 1 + (-0.891 - 0.453i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.156 - 0.987i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 43 | \( 1 + (-0.951 - 0.309i)T \) |
| 47 | \( 1 + (-0.453 - 0.891i)T \) |
| 53 | \( 1 + (0.156 + 0.987i)T \) |
| 59 | \( 1 + (-0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.951 - 0.309i)T \) |
| 67 | \( 1 + (0.987 - 0.156i)T \) |
| 71 | \( 1 + (-0.987 - 0.156i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.707 + 0.707i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.453 + 0.891i)T \) |
| 97 | \( 1 + (-0.987 + 0.156i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.020221667691053177720987101113, −27.767275839391161317500098077493, −27.36495976756392993944810389953, −25.19079075113120349599439711687, −24.74058331787966581176655273585, −23.79799061770691114918661363497, −22.69403268742841957978129183951, −21.75935582494264678821640423643, −20.804948355105498842032329281975, −19.80446250848178637621378780383, −19.01566549697204145110518281620, −17.345697453333652336465789907199, −16.12808909039296462738311587293, −15.17234414035532968685580411812, −14.28735600448484856632575357329, −12.87004219587056638484508491172, −12.02531931062200257186013746479, −11.350694282176516203142821289501, −9.662069511883524874103724050050, −8.397070183692170336112630167012, −6.932409604211364244878950173488, −5.41739656042121209056743047050, −4.61508062564556267715743186890, −3.18538188829934905261007857605, −1.58485135409275560578355174619,
2.216217106214557756546448278349, 3.83890188343656785610818117368, 4.527358027068203680821039671990, 6.43176062134233362904004472560, 7.12415037680570564070281589933, 8.308017877759725026288763799717, 10.34534447815966248241539624064, 11.32760073071612341742165243422, 12.26951239729487308696827134561, 13.65377665081242618272357344746, 14.653009545470097121291296722231, 15.164455406962130918049779264905, 16.75857056428981369483966808721, 17.37580527080695524076285150602, 19.221631422505042552173254501944, 19.94931705795145652384064407497, 21.23703091979372101971549274644, 22.22160598082769627774577917609, 23.05091077159668501374203733520, 23.932415937489970546705780675459, 24.80562355832116433345978190868, 26.2428369491747782086020704718, 26.72258531094258188894574330515, 28.09885303880665814334489912467, 29.695297699686929905141280427802