| L(s) = 1 | + (−0.774 + 0.633i)2-s + (−0.809 + 0.587i)3-s + (0.198 − 0.980i)4-s + (0.897 − 0.441i)5-s + (0.254 − 0.967i)6-s + (−0.0855 − 0.996i)7-s + (0.466 + 0.884i)8-s + (0.309 − 0.951i)9-s + (−0.415 + 0.909i)10-s + (0.415 + 0.909i)12-s + (−0.993 + 0.113i)13-s + (0.696 + 0.717i)14-s + (−0.466 + 0.884i)15-s + (−0.921 − 0.389i)16-s + (0.564 + 0.825i)17-s + (0.362 + 0.931i)18-s + ⋯ |
| L(s) = 1 | + (−0.774 + 0.633i)2-s + (−0.809 + 0.587i)3-s + (0.198 − 0.980i)4-s + (0.897 − 0.441i)5-s + (0.254 − 0.967i)6-s + (−0.0855 − 0.996i)7-s + (0.466 + 0.884i)8-s + (0.309 − 0.951i)9-s + (−0.415 + 0.909i)10-s + (0.415 + 0.909i)12-s + (−0.993 + 0.113i)13-s + (0.696 + 0.717i)14-s + (−0.466 + 0.884i)15-s + (−0.921 − 0.389i)16-s + (0.564 + 0.825i)17-s + (0.362 + 0.931i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05186054802 - 0.1258952746i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.05186054802 - 0.1258952746i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5041045395 + 0.09048638961i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5041045395 + 0.09048638961i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.774 + 0.633i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.897 - 0.441i)T \) |
| 7 | \( 1 + (-0.0855 - 0.996i)T \) |
| 13 | \( 1 + (-0.993 + 0.113i)T \) |
| 17 | \( 1 + (0.564 + 0.825i)T \) |
| 19 | \( 1 + (-0.941 + 0.336i)T \) |
| 23 | \( 1 + (-0.654 + 0.755i)T \) |
| 29 | \( 1 + (-0.610 - 0.791i)T \) |
| 31 | \( 1 + (-0.736 - 0.676i)T \) |
| 37 | \( 1 + (-0.870 + 0.491i)T \) |
| 41 | \( 1 + (0.998 - 0.0570i)T \) |
| 43 | \( 1 + (0.142 - 0.989i)T \) |
| 47 | \( 1 + (-0.362 + 0.931i)T \) |
| 53 | \( 1 + (-0.921 + 0.389i)T \) |
| 59 | \( 1 + (-0.998 - 0.0570i)T \) |
| 61 | \( 1 + (-0.774 - 0.633i)T \) |
| 67 | \( 1 + (0.841 + 0.540i)T \) |
| 71 | \( 1 + (-0.0285 - 0.999i)T \) |
| 73 | \( 1 + (-0.974 + 0.226i)T \) |
| 79 | \( 1 + (0.985 + 0.170i)T \) |
| 83 | \( 1 + (-0.516 + 0.856i)T \) |
| 89 | \( 1 + (-0.959 + 0.281i)T \) |
| 97 | \( 1 + (0.897 + 0.441i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.33426225372283519349606869566, −28.23912040999804196467218554838, −27.54824352662666077590058705379, −26.156267364809933561663660744851, −25.177437860210729745686899168058, −24.48320513908630193330545051653, −22.71182560978801137191636597929, −21.952778571125559109606646333113, −21.232203473211713807101533469973, −19.65531458433767145055719702085, −18.61475976732495463533865629532, −18.06143981060784069302754364032, −17.14098914363280342145376532815, −16.13893447051351898532653651514, −14.43463029693343748286852720339, −12.89696716770682184458715911744, −12.24535716568443676845769157361, −11.07625979615190294395053629938, −10.07940556909228260559862734145, −8.982907911424632441202345819087, −7.47254081209047021635200180138, −6.3889990964149051489163466284, −5.09123576441183927363699113597, −2.737929468452975338938548655290, −1.802828711085409745615052534512,
0.07716738995720312210060727426, 1.623380584526344920024232821258, 4.26783084603811969627719714108, 5.51601766396277516554323478065, 6.41991157938420089866419554708, 7.75367274089924700060635243870, 9.376651156067770123333561995541, 10.05610209647377552210844380039, 10.918713381591259177476124234556, 12.52772089334246058501369554062, 13.997679763212911479338747061638, 15.07096621883979915938093871274, 16.39202595929061961712283376782, 17.15549635098287091986121040942, 17.47039838074463382675853743919, 18.97793256873204751935775198524, 20.24624021585620154562694063002, 21.23879881304922634068178719716, 22.443285494449332541431976718830, 23.628685341634925472392261441369, 24.2748534867151912509429086787, 25.68390086403239166168898743518, 26.38177440166326864452541228562, 27.49755490705100662071045234720, 28.165193553568939524424097149015