| L(s) = 1 | + (0.985 − 0.170i)2-s + (−0.809 − 0.587i)3-s + (0.941 − 0.336i)4-s + (0.993 − 0.113i)5-s + (−0.897 − 0.441i)6-s + (0.362 − 0.931i)7-s + (0.870 − 0.491i)8-s + (0.309 + 0.951i)9-s + (0.959 − 0.281i)10-s + (−0.959 − 0.281i)12-s + (0.0285 + 0.999i)13-s + (0.198 − 0.980i)14-s + (−0.870 − 0.491i)15-s + (0.774 − 0.633i)16-s + (−0.516 − 0.856i)17-s + (0.466 + 0.884i)18-s + ⋯ |
| L(s) = 1 | + (0.985 − 0.170i)2-s + (−0.809 − 0.587i)3-s + (0.941 − 0.336i)4-s + (0.993 − 0.113i)5-s + (−0.897 − 0.441i)6-s + (0.362 − 0.931i)7-s + (0.870 − 0.491i)8-s + (0.309 + 0.951i)9-s + (0.959 − 0.281i)10-s + (−0.959 − 0.281i)12-s + (0.0285 + 0.999i)13-s + (0.198 − 0.980i)14-s + (−0.870 − 0.491i)15-s + (0.774 − 0.633i)16-s + (−0.516 − 0.856i)17-s + (0.466 + 0.884i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.358978798 - 2.038711083i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.358978798 - 2.038711083i\) |
| \(L(1)\) |
\(\approx\) |
\(1.724526397 - 0.7959368482i\) |
| \(L(1)\) |
\(\approx\) |
\(1.724526397 - 0.7959368482i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| good | 2 | \( 1 + (0.985 - 0.170i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (0.993 - 0.113i)T \) |
| 7 | \( 1 + (0.362 - 0.931i)T \) |
| 13 | \( 1 + (0.0285 + 0.999i)T \) |
| 17 | \( 1 + (-0.516 - 0.856i)T \) |
| 19 | \( 1 + (-0.0855 - 0.996i)T \) |
| 23 | \( 1 + (0.841 + 0.540i)T \) |
| 29 | \( 1 + (-0.974 - 0.226i)T \) |
| 31 | \( 1 + (-0.564 - 0.825i)T \) |
| 37 | \( 1 + (0.610 - 0.791i)T \) |
| 41 | \( 1 + (-0.696 + 0.717i)T \) |
| 43 | \( 1 + (-0.415 + 0.909i)T \) |
| 47 | \( 1 + (-0.466 + 0.884i)T \) |
| 53 | \( 1 + (0.774 + 0.633i)T \) |
| 59 | \( 1 + (0.696 + 0.717i)T \) |
| 61 | \( 1 + (0.985 + 0.170i)T \) |
| 67 | \( 1 + (-0.142 + 0.989i)T \) |
| 71 | \( 1 + (-0.921 + 0.389i)T \) |
| 73 | \( 1 + (0.998 - 0.0570i)T \) |
| 79 | \( 1 + (0.736 - 0.676i)T \) |
| 83 | \( 1 + (0.254 + 0.967i)T \) |
| 89 | \( 1 + (-0.654 + 0.755i)T \) |
| 97 | \( 1 + (0.993 + 0.113i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.04616360298823511952418010634, −28.34956358779210539916820585388, −27.06939067886610943329011239846, −25.680107878178168228724998390974, −24.90661133042344331301634121671, −23.88058151096433741581945326348, −22.625045065665035357413318021663, −22.03254946789860731980081311926, −21.228912607886067494269239201327, −20.42580903010627693833239848242, −18.4822131833185606607268761705, −17.41657992800811920200171425560, −16.54123811440246665578780218258, −15.219350394528510637618485918983, −14.695340437936429437040856474909, −13.10036843215877470930433609300, −12.30491772060792691265735524447, −11.038068111252562163087563394991, −10.173518442791114473152553762592, −8.57309912173267905796273637778, −6.679451433130704530607080707673, −5.66941466116422728483230590636, −5.0860838617087910205913258038, −3.44382349578885777407915430093, −1.871894037089749728564551724593,
1.12481332648566147783314611315, 2.33164847621867221550510570868, 4.39382136240123149391068214731, 5.33844346907997315631679410484, 6.58324206079309479333563878522, 7.32482515513500483141607598080, 9.55808432342575868080417827893, 10.958344885794264989980858111015, 11.53078290886288507040809096525, 13.18512922051844882166962207206, 13.43761195454138206099573208188, 14.63183271755654330766502838324, 16.31658303371032585639127375863, 17.04871302653702973312381212858, 18.14655861082037267747807480172, 19.487067343815040828858196329314, 20.677826567700201315361220844632, 21.621381463473342086822344378181, 22.49764815144893281144643931699, 23.557044543597062218447350672939, 24.24116048179392476307880995638, 25.129096191656469074485725664982, 26.3926021730373816911116202212, 28.03692337264804548787578316481, 28.97686651899683376582843883174