| L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.382 + 0.923i)3-s − i·4-s + (−0.923 − 0.382i)5-s + (−0.382 − 0.923i)6-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (0.923 − 0.382i)10-s + (−0.382 − 0.923i)11-s + (0.923 + 0.382i)12-s − i·13-s + (0.707 − 0.707i)15-s − 16-s + 18-s + (0.707 − 0.707i)19-s + (−0.382 + 0.923i)20-s + ⋯ |
| L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.382 + 0.923i)3-s − i·4-s + (−0.923 − 0.382i)5-s + (−0.382 − 0.923i)6-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (0.923 − 0.382i)10-s + (−0.382 − 0.923i)11-s + (0.923 + 0.382i)12-s − i·13-s + (0.707 − 0.707i)15-s − 16-s + 18-s + (0.707 − 0.707i)19-s + (−0.382 + 0.923i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.855 - 0.518i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.855 - 0.518i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3675865500 - 0.1027029964i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3675865500 - 0.1027029964i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4951280362 + 0.1027655335i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4951280362 + 0.1027655335i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.382 + 0.923i)T \) |
| 5 | \( 1 + (-0.923 - 0.382i)T \) |
| 11 | \( 1 + (-0.382 - 0.923i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (0.382 + 0.923i)T \) |
| 29 | \( 1 + (-0.923 - 0.382i)T \) |
| 31 | \( 1 + (0.382 - 0.923i)T \) |
| 37 | \( 1 + (0.382 - 0.923i)T \) |
| 41 | \( 1 + (-0.923 + 0.382i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.707 - 0.707i)T \) |
| 61 | \( 1 + (0.923 - 0.382i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.382 - 0.923i)T \) |
| 73 | \( 1 + (-0.923 - 0.382i)T \) |
| 79 | \( 1 + (-0.382 - 0.923i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.923 + 0.382i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.99242979028729637695820899967, −28.45112584206253485000289599552, −27.33351825392154785646574493259, −26.34407898243489206571530929736, −25.35429220201119490792519715158, −24.09310233642850850728414499257, −23.01810428535678081535722385381, −22.24348587410139601898631573719, −20.684719830953477148150244612582, −19.77121146292694765907326806085, −18.75516083979073148332734574718, −18.28474428690323533367548650791, −17.01390145090071794659965621316, −16.04438755914367084505747538079, −14.41681166292864370233332686087, −12.95281471854414489473478042594, −12.04977787026687402146094316911, −11.33333987289142316393342516990, −10.15169311311800863371255606335, −8.576912757131475144357529114832, −7.52462513230418616832497478265, −6.75407518663508475153951547056, −4.592442848760472105927905349038, −2.987091451366423067878431150332, −1.56984813765412255150753974387,
0.49704163090793426628833281133, 3.382713380232792049578559507117, 4.93479000694645055805169501130, 5.81501770691643565660687282342, 7.50019120734174128916230020084, 8.52391042307683468350334721355, 9.57422888024761500405113955814, 10.83196744141778593836434660313, 11.593886172369132636483092260871, 13.43252405635868159533833914157, 15.05261760628004574211742608777, 15.598549812482424334016858670786, 16.4741647584706582148133687830, 17.373685646925932988580014852177, 18.61163036944261965311132141976, 19.802795746747025669755733500231, 20.61249935459445662719779773211, 22.10190018733988032469910026233, 23.17122577338976277124990087190, 23.94196140138998714519360295109, 25.05192698353751348700974332537, 26.445022899365811774123763263709, 26.9250474282707766096648352664, 27.89335178033690831398388121044, 28.48514380411476271458718353518