| L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.130 − 0.991i)3-s + (−0.866 + 0.5i)4-s + (−0.608 − 0.793i)5-s + (0.923 − 0.382i)6-s + (−0.707 − 0.707i)8-s + (−0.965 + 0.258i)9-s + (0.608 − 0.793i)10-s + (0.793 + 0.608i)11-s + (0.608 + 0.793i)12-s + i·13-s + (−0.707 + 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.258 + 0.965i)19-s + (0.923 + 0.382i)20-s + ⋯ |
| L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.130 − 0.991i)3-s + (−0.866 + 0.5i)4-s + (−0.608 − 0.793i)5-s + (0.923 − 0.382i)6-s + (−0.707 − 0.707i)8-s + (−0.965 + 0.258i)9-s + (0.608 − 0.793i)10-s + (0.793 + 0.608i)11-s + (0.608 + 0.793i)12-s + i·13-s + (−0.707 + 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.258 + 0.965i)19-s + (0.923 + 0.382i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.493 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.493 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4691835840 + 0.8051596605i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4691835840 + 0.8051596605i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8148194873 + 0.2765215393i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8148194873 + 0.2765215393i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 + (-0.130 - 0.991i)T \) |
| 5 | \( 1 + (-0.608 - 0.793i)T \) |
| 11 | \( 1 + (0.793 + 0.608i)T \) |
| 13 | \( 1 + iT \) |
| 19 | \( 1 + (0.258 + 0.965i)T \) |
| 23 | \( 1 + (-0.130 + 0.991i)T \) |
| 29 | \( 1 + (0.382 - 0.923i)T \) |
| 31 | \( 1 + (0.130 + 0.991i)T \) |
| 37 | \( 1 + (-0.793 + 0.608i)T \) |
| 41 | \( 1 + (-0.382 - 0.923i)T \) |
| 43 | \( 1 + (0.707 + 0.707i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.965 - 0.258i)T \) |
| 59 | \( 1 + (-0.258 + 0.965i)T \) |
| 61 | \( 1 + (-0.991 - 0.130i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.923 + 0.382i)T \) |
| 73 | \( 1 + (0.991 - 0.130i)T \) |
| 79 | \( 1 + (0.130 - 0.991i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.382 - 0.923i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.40233059298680965799191000296, −27.516391093998311483476905175581, −26.93330452660386615719437397064, −25.95494118671907643788174927175, −24.18878310191629300503203938192, −22.87399729799347036352483747204, −22.35340703919714358718419176984, −21.55805200487683379077994599129, −20.27487786536301582769660685801, −19.62370164850417945846781488105, −18.40942108972982129877501854194, −17.26668666376912084682642929459, −15.77886630702503963900163040368, −14.80859603398610935528072599716, −13.96439430408516715359021527489, −12.34900046866597721016915601698, −11.21251869512021702637450855399, −10.67545971511445293152600177947, −9.47388807311365808111493826930, −8.29774513724208736805584208678, −6.27781926053040303097793986964, −4.86755936232801884692439591697, −3.66710216751008427695763262963, −2.83387844119186945287131454975, −0.39170061522081987887351159836,
1.40771712274125270519051898770, 3.76464532277887399660411543023, 5.04394283887115277104993915623, 6.37338728297440255722707301061, 7.380594355310606876924524268984, 8.35390606398681602013737975739, 9.414113050555924264046852647677, 11.80009571538170459164216888219, 12.316554675779686868272672793817, 13.550273718666920370901101440022, 14.437774786462037234495904539424, 15.78070509990780491142483724074, 16.831975484003173215775208421441, 17.54275636211342441647831588073, 18.83609725160024150193449422136, 19.72117473889198621933341235193, 21.13269475676686673252137980699, 22.630419044705983979634705913470, 23.34306730928094051258941763410, 24.22554608227404749603313326008, 24.91103252325459984974903289834, 25.82699630625485931250009445676, 27.168981410778430084988763216, 28.08337460092224673609764965468, 29.20779688914248927960705461843