| L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.793 − 0.608i)3-s + (0.866 + 0.5i)4-s + (−0.991 + 0.130i)5-s + (−0.923 + 0.382i)6-s + (−0.707 − 0.707i)8-s + (0.258 − 0.965i)9-s + (0.991 + 0.130i)10-s + (−0.130 + 0.991i)11-s + (0.991 − 0.130i)12-s + i·13-s + (−0.707 + 0.707i)15-s + (0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.965 − 0.258i)19-s + (−0.923 − 0.382i)20-s + ⋯ |
| L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.793 − 0.608i)3-s + (0.866 + 0.5i)4-s + (−0.991 + 0.130i)5-s + (−0.923 + 0.382i)6-s + (−0.707 − 0.707i)8-s + (0.258 − 0.965i)9-s + (0.991 + 0.130i)10-s + (−0.130 + 0.991i)11-s + (0.991 − 0.130i)12-s + i·13-s + (−0.707 + 0.707i)15-s + (0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.965 − 0.258i)19-s + (−0.923 − 0.382i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.452 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.452 + 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7026094024 + 0.4316273036i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7026094024 + 0.4316273036i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7195377283 + 0.02343495389i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7195377283 + 0.02343495389i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 + (0.793 - 0.608i)T \) |
| 5 | \( 1 + (-0.991 + 0.130i)T \) |
| 11 | \( 1 + (-0.130 + 0.991i)T \) |
| 13 | \( 1 + iT \) |
| 19 | \( 1 + (-0.965 - 0.258i)T \) |
| 23 | \( 1 + (0.793 + 0.608i)T \) |
| 29 | \( 1 + (-0.382 + 0.923i)T \) |
| 31 | \( 1 + (-0.793 + 0.608i)T \) |
| 37 | \( 1 + (0.130 + 0.991i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (0.707 + 0.707i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.258 + 0.965i)T \) |
| 59 | \( 1 + (0.965 - 0.258i)T \) |
| 61 | \( 1 + (-0.608 + 0.793i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.923 - 0.382i)T \) |
| 73 | \( 1 + (0.608 + 0.793i)T \) |
| 79 | \( 1 + (-0.793 - 0.608i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.382 + 0.923i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.24727428828413989354374382068, −27.36064243105797752484247406131, −26.897178013845682742663024484320, −25.87749692006773968296489394911, −24.86221860399025377649403258454, −23.990628794629867014429065674802, −22.64674519201349205062582216833, −21.09871046497281740438222643203, −20.32910992499776016310218955857, −19.3031827758266963251549996609, −18.763990206185587263223474671373, −17.083247279176549109198257380524, −16.118453549341315286524806188121, −15.34448915960507444921090401775, −14.488940110126021378200355582250, −12.82147397100128142645780548824, −11.17416755119684733067111453048, −10.47162377498500023210094685748, −9.0094218629160421554779280071, −8.275279437191863714607528178297, −7.38536958214889039131970290984, −5.59932387980504528657054052279, −3.87647237797388976297290429420, −2.56944492582886882187067610685, −0.43502786334169966517279069261,
1.44677226225344095643210226880, 2.794363981533293869980366097735, 4.13777421270888844074948117212, 6.79179239292047420359516327332, 7.39997757135530424119728349227, 8.55099966124269873063091515678, 9.43574186201292199487142176833, 10.93623790038756965967586671580, 12.05567422194037073917020287827, 12.91777727641201874643692371290, 14.67784644323290894341428417269, 15.45024468104503878398056390774, 16.736891642287153443922605551346, 18.01759627829912799573354890383, 18.90608630598918778350376921101, 19.6479411161227820624084571019, 20.414637352900376632271843216219, 21.52938344322086757691155076327, 23.31856519130944566736095615872, 24.10485945466005966283152406965, 25.368976511491530805274965572715, 26.02930345594746351433613140285, 26.99348124874957108056527239644, 27.91237228885080628499606465808, 29.0261818077574241104370158802