| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.258 − 0.965i)3-s + (0.5 + 0.866i)4-s + (0.965 − 0.258i)5-s + (0.707 − 0.707i)6-s + i·8-s + (−0.866 − 0.5i)9-s + (0.965 + 0.258i)10-s + (0.965 + 0.258i)11-s + (0.965 − 0.258i)12-s + 13-s − i·15-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)18-s + (−0.866 − 0.5i)19-s + (0.707 + 0.707i)20-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.258 − 0.965i)3-s + (0.5 + 0.866i)4-s + (0.965 − 0.258i)5-s + (0.707 − 0.707i)6-s + i·8-s + (−0.866 − 0.5i)9-s + (0.965 + 0.258i)10-s + (0.965 + 0.258i)11-s + (0.965 − 0.258i)12-s + 13-s − i·15-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)18-s + (−0.866 − 0.5i)19-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.998 - 0.0590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.802318553 - 0.1123720924i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.802318553 - 0.1123720924i\) |
| \(L(1)\) |
\(\approx\) |
\(2.249922015 + 0.01623216431i\) |
| \(L(1)\) |
\(\approx\) |
\(2.249922015 + 0.01623216431i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 + (0.965 - 0.258i)T \) |
| 11 | \( 1 + (0.965 + 0.258i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (-0.258 - 0.965i)T \) |
| 29 | \( 1 + (0.707 + 0.707i)T \) |
| 31 | \( 1 + (0.258 - 0.965i)T \) |
| 37 | \( 1 + (0.965 - 0.258i)T \) |
| 41 | \( 1 + (-0.707 + 0.707i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.258 - 0.965i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (-0.258 + 0.965i)T \) |
| 79 | \( 1 + (-0.258 - 0.965i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.707 - 0.707i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.94957905348786567382095993260, −28.032471254572960007633677297586, −27.042582252319064947215122728131, −25.544786448591587776329008713694, −25.095228016518249830640386935788, −23.48540169722834527554402419556, −22.47632427498947247247283733089, −21.61549298514984109089162130269, −21.05383118398341826301861977989, −19.99341465326220808863649552053, −18.8991628080248716450566505410, −17.34749077030737839873596098040, −16.15346103657557562082884745544, −15.02718521769007960706347601356, −14.10613346725756424340116207224, −13.403653109877277378084340669527, −11.78510280070205889850113020509, −10.70794646603880999468173880237, −9.86813501674525895398427633486, −8.74093621045659349462629139347, −6.464128784606674833106805852351, −5.58587414013420882282616172723, −4.19207712077848890037897358089, −3.148820570718655601170781698319, −1.66964190584675517191055878309,
1.50730351107540076491588590122, 2.82173523928539309258399240640, 4.48609168875075066949586434812, 6.16119781856090935375483819544, 6.52931804179828686321094884738, 8.11691171499340237101353818252, 9.13018481223440245253939651486, 11.10428734508036942819373408730, 12.38903253319277973226570177910, 13.172295221397501629675902723260, 14.04409980411712565298603421256, 14.87693767438535531381182450784, 16.497484763916757985216837930295, 17.38324301360664024745910190366, 18.31291123151834877830404535156, 19.86320303243607646138724839638, 20.77013703202387080386049288933, 21.86555812538144399943570225192, 22.935769522761471634705533235577, 23.91546815231340122513309875537, 24.854325136060993826988515909827, 25.45133946390120605838160475134, 26.25680758779544932958310020641, 28.13353689705530485483042961213, 29.2366490624898800479386476028