| L(s) = 1 | + (−0.258 + 0.965i)2-s + (0.991 + 0.130i)3-s + (−0.866 − 0.5i)4-s + (0.793 + 0.608i)5-s + (−0.382 + 0.923i)6-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (−0.793 + 0.608i)10-s + (0.608 + 0.793i)11-s + (−0.793 − 0.608i)12-s − i·13-s + (0.707 + 0.707i)15-s + (0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.258 + 0.965i)19-s + (−0.382 − 0.923i)20-s + ⋯ |
| L(s) = 1 | + (−0.258 + 0.965i)2-s + (0.991 + 0.130i)3-s + (−0.866 − 0.5i)4-s + (0.793 + 0.608i)5-s + (−0.382 + 0.923i)6-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (−0.793 + 0.608i)10-s + (0.608 + 0.793i)11-s + (−0.793 − 0.608i)12-s − i·13-s + (0.707 + 0.707i)15-s + (0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.258 + 0.965i)19-s + (−0.382 − 0.923i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.225 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.225 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.483265398 + 1.866674439i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.483265398 + 1.866674439i\) |
| \(L(1)\) |
\(\approx\) |
\(1.214081013 + 0.8432104931i\) |
| \(L(1)\) |
\(\approx\) |
\(1.214081013 + 0.8432104931i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (0.991 + 0.130i)T \) |
| 5 | \( 1 + (0.793 + 0.608i)T \) |
| 11 | \( 1 + (0.608 + 0.793i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (-0.258 + 0.965i)T \) |
| 23 | \( 1 + (0.991 - 0.130i)T \) |
| 29 | \( 1 + (0.923 - 0.382i)T \) |
| 31 | \( 1 + (-0.991 - 0.130i)T \) |
| 37 | \( 1 + (-0.608 + 0.793i)T \) |
| 41 | \( 1 + (-0.923 - 0.382i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.965 - 0.258i)T \) |
| 59 | \( 1 + (0.258 + 0.965i)T \) |
| 61 | \( 1 + (-0.130 - 0.991i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.382 - 0.923i)T \) |
| 73 | \( 1 + (0.130 - 0.991i)T \) |
| 79 | \( 1 + (-0.991 + 0.130i)T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.923 - 0.382i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.80986382805727912076158297835, −27.592733136664840974737607910917, −26.623065733998024163430498749750, −25.7266444787959404613286806753, −24.717278019410623169650403482, −23.61042693763526256419313862383, −21.70413490816358280429986564197, −21.48967069750885966335875953637, −20.300391051731453516441468252865, −19.48426238997443170875735544477, −18.58278741021318373363145958215, −17.389378540213539948158755073947, −16.32546008524707026971668701337, −14.48985283244564122190046604096, −13.644547792616944758860867965630, −12.89077308942057555695063259222, −11.597889702305038053038166922180, −10.18694081952406863687482066396, −8.95496611814468944694838839721, −8.742411789880329852636793625132, −6.894771127347114405516804066965, −4.92746564605804716232209571155, −3.608346824971820732572987709974, −2.25906778262695269920852603274, −1.12447605245480824909521371182,
1.65407866589513028391805883117, 3.370042957051767265435378476797, 4.92910128314827657746475862006, 6.40128353484051748759701272665, 7.4209877904138599971861561009, 8.58831306529615990806890090699, 9.71791843744150836523579239402, 10.40186149272452179532429637107, 12.76149081058950250854290388201, 13.755408948542888177438073589436, 14.74518822294305557413392122876, 15.23466370955151568002831266773, 16.730702683980873751941272631464, 17.80253777921432857156093451735, 18.67860666658343085521763780588, 19.76630421695744437166960192564, 20.99409704119822077329845960096, 22.22297606680319633807617068053, 23.065799783086659304326800542433, 24.642757450176559362523851951761, 25.29112159792188229091906770095, 25.82448990859460349391757126692, 26.9864628211382598374521401634, 27.64234371831753463098288182031, 29.1950833370495878655847298102