L(s) = 1 | + (0.160 + 0.987i)2-s + (0.996 − 0.0804i)3-s + (−0.948 + 0.316i)4-s + (0.391 + 0.919i)5-s + (0.239 + 0.970i)6-s + (−0.464 − 0.885i)8-s + (0.987 − 0.160i)9-s + (−0.845 + 0.534i)10-s + (0.160 − 0.987i)11-s + (−0.919 + 0.391i)12-s + (0.464 + 0.885i)15-s + (0.799 − 0.600i)16-s + (−0.0402 + 0.999i)17-s + (0.316 + 0.948i)18-s + (−0.866 + 0.5i)19-s + (−0.663 − 0.748i)20-s + ⋯ |
L(s) = 1 | + (0.160 + 0.987i)2-s + (0.996 − 0.0804i)3-s + (−0.948 + 0.316i)4-s + (0.391 + 0.919i)5-s + (0.239 + 0.970i)6-s + (−0.464 − 0.885i)8-s + (0.987 − 0.160i)9-s + (−0.845 + 0.534i)10-s + (0.160 − 0.987i)11-s + (−0.919 + 0.391i)12-s + (0.464 + 0.885i)15-s + (0.799 − 0.600i)16-s + (−0.0402 + 0.999i)17-s + (0.316 + 0.948i)18-s + (−0.866 + 0.5i)19-s + (−0.663 − 0.748i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8700675124 + 2.051717256i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8700675124 + 2.051717256i\) |
\(L(1)\) |
\(\approx\) |
\(1.173903584 + 0.9874473817i\) |
\(L(1)\) |
\(\approx\) |
\(1.173903584 + 0.9874473817i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.160 + 0.987i)T \) |
| 3 | \( 1 + (0.996 - 0.0804i)T \) |
| 5 | \( 1 + (0.391 + 0.919i)T \) |
| 11 | \( 1 + (0.160 - 0.987i)T \) |
| 17 | \( 1 + (-0.0402 + 0.999i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.354 + 0.935i)T \) |
| 31 | \( 1 + (-0.960 - 0.278i)T \) |
| 37 | \( 1 + (0.721 - 0.692i)T \) |
| 41 | \( 1 + (0.822 - 0.568i)T \) |
| 43 | \( 1 + (0.970 + 0.239i)T \) |
| 47 | \( 1 + (-0.316 + 0.948i)T \) |
| 53 | \( 1 + (-0.0402 + 0.999i)T \) |
| 59 | \( 1 + (-0.600 + 0.799i)T \) |
| 61 | \( 1 + (0.0402 + 0.999i)T \) |
| 67 | \( 1 + (0.979 - 0.200i)T \) |
| 71 | \( 1 + (-0.822 + 0.568i)T \) |
| 73 | \( 1 + (-0.160 + 0.987i)T \) |
| 79 | \( 1 + (0.948 + 0.316i)T \) |
| 83 | \( 1 + (-0.822 - 0.568i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.992 - 0.120i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.7548596358782667608016134974, −20.28720696695084128258906291237, −19.70181633380025036784925376995, −18.84377317509002586259323058200, −18.05941784225606274527881375652, −17.27222553782866921161844862996, −16.31830664185364724450846452378, −15.23250836700296628812224675748, −14.56884795812255410613349820061, −13.7623005556346224854231973286, −12.94964294840469170688025963646, −12.649999443096739817774388235211, −11.618651241422729626238242237023, −10.56081409155923269114814154303, −9.63725814547176060267722201298, −9.27845787308905980785388293732, −8.505775568057046459299995395569, −7.60622851793908549643329679002, −6.378780962160014556186623427380, −4.935888942709721287566100232685, −4.59710856360372181604211198964, −3.63488579716767410259348760946, −2.421125489676835391551273226682, −1.988100277136756322262956930594, −0.78048184937825184930490701803,
1.4241742499863306431946125352, 2.68541651670493956049897497765, 3.57285581785331979513078839509, 4.16983876283062559675545220563, 5.69136353839602028828219687371, 6.193096708566466732153949400756, 7.23985419547192514134926009849, 7.75930712891893303437443814768, 8.79046366108631083971360063441, 9.27020976734043124391621891791, 10.33477163702216877251654612164, 11.10366341196675960965473849956, 12.662170988033918127183921750014, 13.12842510660687334831384176236, 14.09811619030430442704782014762, 14.485613112411467581672008206292, 15.11613334201190658106859536895, 15.9291783900664646309361740542, 16.82493218115530979997264392371, 17.65361162655549293859652167836, 18.49966045123611990306679986078, 19.054121141195141055494148929960, 19.67775165876176177813579766267, 21.108002169729293009429966141150, 21.54870107659617218149728926668