L(s) = 1 | + (−0.534 − 0.845i)2-s + (−0.692 + 0.721i)3-s + (−0.428 + 0.903i)4-s + (−0.935 + 0.354i)5-s + (0.979 + 0.200i)6-s + (0.992 − 0.120i)8-s + (−0.0402 − 0.999i)9-s + (0.799 + 0.600i)10-s + (0.999 + 0.0402i)11-s + (−0.354 − 0.935i)12-s + (0.391 − 0.919i)15-s + (−0.632 − 0.774i)16-s + (0.799 − 0.600i)17-s + (−0.822 + 0.568i)18-s + (−0.866 + 0.5i)19-s + (0.0804 − 0.996i)20-s + ⋯ |
L(s) = 1 | + (−0.534 − 0.845i)2-s + (−0.692 + 0.721i)3-s + (−0.428 + 0.903i)4-s + (−0.935 + 0.354i)5-s + (0.979 + 0.200i)6-s + (0.992 − 0.120i)8-s + (−0.0402 − 0.999i)9-s + (0.799 + 0.600i)10-s + (0.999 + 0.0402i)11-s + (−0.354 − 0.935i)12-s + (0.391 − 0.919i)15-s + (−0.632 − 0.774i)16-s + (0.799 − 0.600i)17-s + (−0.822 + 0.568i)18-s + (−0.866 + 0.5i)19-s + (0.0804 − 0.996i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2173597550 - 0.3107633120i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2173597550 - 0.3107633120i\) |
\(L(1)\) |
\(\approx\) |
\(0.5030757100 - 0.08537368198i\) |
\(L(1)\) |
\(\approx\) |
\(0.5030757100 - 0.08537368198i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.534 - 0.845i)T \) |
| 3 | \( 1 + (-0.692 + 0.721i)T \) |
| 5 | \( 1 + (-0.935 + 0.354i)T \) |
| 11 | \( 1 + (0.999 + 0.0402i)T \) |
| 17 | \( 1 + (0.799 - 0.600i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.845 + 0.534i)T \) |
| 31 | \( 1 + (-0.663 + 0.748i)T \) |
| 37 | \( 1 + (-0.316 - 0.948i)T \) |
| 41 | \( 1 + (-0.721 - 0.692i)T \) |
| 43 | \( 1 + (-0.948 - 0.316i)T \) |
| 47 | \( 1 + (0.822 + 0.568i)T \) |
| 53 | \( 1 + (0.120 + 0.992i)T \) |
| 59 | \( 1 + (-0.774 - 0.632i)T \) |
| 61 | \( 1 + (0.919 - 0.391i)T \) |
| 67 | \( 1 + (-0.903 + 0.428i)T \) |
| 71 | \( 1 + (-0.960 + 0.278i)T \) |
| 73 | \( 1 + (0.464 + 0.885i)T \) |
| 79 | \( 1 + (0.568 - 0.822i)T \) |
| 83 | \( 1 + (0.239 + 0.970i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.160 - 0.987i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.73069157401049270760227508450, −20.353722508547755650674263490281, −19.42747848082653499283436787105, −19.17532889252791436375756790634, −18.381617619804535153663294263844, −17.37711343225700029111564811454, −16.798439180915001487632170513334, −16.46119122742098709898601471092, −15.169714520061222097315914356883, −14.89381116559303665551567987949, −13.59081149123309445349806830273, −12.983068079005265109550644449813, −11.90969907810575228358365895713, −11.35865727422242848420069213898, −10.461204546671590060518200997681, −9.36857819055846074837667090442, −8.487565617680493603172445693361, −7.80179357921401474242229619134, −7.06622639932497514764462060477, −6.34231399712137117331801974753, −5.46781274910672998144539988193, −4.60774148707851951884151298427, −3.63598583311432271147211061939, −1.80325783652313978266063856439, −0.9795540785168395068646354884,
0.26747421523340689086492012415, 1.49651155051566478183969293753, 2.983074367273482826602547596341, 3.753253201985786185632470114804, 4.32115887309243161113142230267, 5.36566174593260245827710179917, 6.69791695499148888722340297426, 7.37042666257166108852284640866, 8.58796017033928782769362274640, 9.13849386607904865114054873912, 10.16435842174003674247576845471, 10.8011189030533567952413234663, 11.40496878777468674744005822849, 12.25023509935883233885124138865, 12.56015797294263295288906866015, 14.16154101952270587619327466167, 14.783121077054180059053373349767, 15.79475219115106210134871942796, 16.67578105575038982925034223482, 16.9419242109412586217411696780, 18.06882242895306921949234326099, 18.735980962992976939158258417521, 19.40824665274401871297289170750, 20.36254997535533035966685341178, 20.782709401763853239470067914573