L(s) = 1 | + (0.935 − 0.354i)2-s + (−0.428 − 0.903i)3-s + (0.748 − 0.663i)4-s + (−0.391 + 0.919i)5-s + (−0.721 − 0.692i)6-s + (0.464 − 0.885i)8-s + (−0.632 + 0.774i)9-s + (−0.0402 + 0.999i)10-s + (−0.774 + 0.632i)11-s + (−0.919 − 0.391i)12-s + (0.999 − 0.0402i)15-s + (0.120 − 0.992i)16-s + (0.885 + 0.464i)17-s + (−0.316 + 0.948i)18-s + (−0.866 + 0.5i)19-s + (0.316 + 0.948i)20-s + ⋯ |
L(s) = 1 | + (0.935 − 0.354i)2-s + (−0.428 − 0.903i)3-s + (0.748 − 0.663i)4-s + (−0.391 + 0.919i)5-s + (−0.721 − 0.692i)6-s + (0.464 − 0.885i)8-s + (−0.632 + 0.774i)9-s + (−0.0402 + 0.999i)10-s + (−0.774 + 0.632i)11-s + (−0.919 − 0.391i)12-s + (0.999 − 0.0402i)15-s + (0.120 − 0.992i)16-s + (0.885 + 0.464i)17-s + (−0.316 + 0.948i)18-s + (−0.866 + 0.5i)19-s + (0.316 + 0.948i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.269934328 + 0.5385384357i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.269934328 + 0.5385384357i\) |
\(L(1)\) |
\(\approx\) |
\(1.240880447 - 0.2118505077i\) |
\(L(1)\) |
\(\approx\) |
\(1.240880447 - 0.2118505077i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.935 - 0.354i)T \) |
| 3 | \( 1 + (-0.428 - 0.903i)T \) |
| 5 | \( 1 + (-0.391 + 0.919i)T \) |
| 11 | \( 1 + (-0.774 + 0.632i)T \) |
| 17 | \( 1 + (0.885 + 0.464i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (-0.632 + 0.774i)T \) |
| 31 | \( 1 + (0.960 - 0.278i)T \) |
| 37 | \( 1 + (-0.239 + 0.970i)T \) |
| 41 | \( 1 + (-0.0804 + 0.996i)T \) |
| 43 | \( 1 + (-0.278 + 0.960i)T \) |
| 47 | \( 1 + (0.316 + 0.948i)T \) |
| 53 | \( 1 + (-0.0402 - 0.999i)T \) |
| 59 | \( 1 + (-0.992 + 0.120i)T \) |
| 61 | \( 1 + (0.845 + 0.534i)T \) |
| 67 | \( 1 + (0.316 + 0.948i)T \) |
| 71 | \( 1 + (-0.903 + 0.428i)T \) |
| 73 | \( 1 + (0.160 + 0.987i)T \) |
| 79 | \( 1 + (0.948 - 0.316i)T \) |
| 83 | \( 1 + (0.822 - 0.568i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.600 - 0.799i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.194016719297623632325551388402, −20.699008826872275922468139386957, −19.9744919107943717590605784728, −18.95446664126031509421007146892, −17.64554380032354575317621337103, −16.89149551096473016959666689860, −16.37218214264308363288831567392, −15.62103465492860735377817607276, −15.25655621729806063571137131957, −14.08056600295816706620360466369, −13.45009489273051816754557959438, −12.35352335345271789237483044756, −11.96368728242095690489548453128, −11.0207429551391750446696852925, −10.29238845435332639806478440831, −9.11414228230205095558874599581, −8.30663057389368730562605341870, −7.53574976472750445118018246619, −6.244472643494040504633364054, −5.508288691992427544324696687372, −4.92940052340994778022179900295, −4.060915406300754352551288429288, −3.39990327106822832891977463607, −2.20842910572805289950872752114, −0.40745117608910983557401164290,
1.38691536479406442933261771438, 2.3054884942708489891163638720, 3.06949665663069312563188490587, 4.1333743948104326299025216865, 5.14266419330398544050497675097, 6.10164112989408365398983103151, 6.60570527748645712488972959005, 7.61082262341270563344071894980, 8.0939593998645407190343558766, 10.00649386367667089501932616640, 10.4518154171512644205565700392, 11.359982772119253022025362886044, 12.000904403007350154889955375022, 12.71930634152494411079974436046, 13.36469894262019568317751321975, 14.38755145573674321560611635551, 14.78624915213485366834354301012, 15.76353054601810807351783595380, 16.59236336123736861993248898818, 17.65849001572284151201920604609, 18.52116947923845301876236364082, 18.995556998265274792904592687313, 19.72107568763075597565727761407, 20.58145015977125148058704051765, 21.46898058731186431020681952180