L(s) = 1 | + (0.120 − 0.992i)2-s + (−0.200 − 0.979i)3-s + (−0.970 − 0.239i)4-s + (−0.0402 + 0.999i)5-s + (−0.996 + 0.0804i)6-s + (−0.354 + 0.935i)8-s + (−0.919 + 0.391i)9-s + (0.987 + 0.160i)10-s + (−0.919 − 0.391i)11-s + (−0.0402 + 0.999i)12-s + (0.987 − 0.160i)15-s + (0.885 + 0.464i)16-s + (−0.354 + 0.935i)17-s + (0.278 + 0.960i)18-s + (−0.5 − 0.866i)19-s + (0.278 − 0.960i)20-s + ⋯ |
L(s) = 1 | + (0.120 − 0.992i)2-s + (−0.200 − 0.979i)3-s + (−0.970 − 0.239i)4-s + (−0.0402 + 0.999i)5-s + (−0.996 + 0.0804i)6-s + (−0.354 + 0.935i)8-s + (−0.919 + 0.391i)9-s + (0.987 + 0.160i)10-s + (−0.919 − 0.391i)11-s + (−0.0402 + 0.999i)12-s + (0.987 − 0.160i)15-s + (0.885 + 0.464i)16-s + (−0.354 + 0.935i)17-s + (0.278 + 0.960i)18-s + (−0.5 − 0.866i)19-s + (0.278 − 0.960i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5956321836 - 0.7761318754i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5956321836 - 0.7761318754i\) |
\(L(1)\) |
\(\approx\) |
\(0.6732524978 - 0.4972355708i\) |
\(L(1)\) |
\(\approx\) |
\(0.6732524978 - 0.4972355708i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.120 - 0.992i)T \) |
| 3 | \( 1 + (-0.200 - 0.979i)T \) |
| 5 | \( 1 + (-0.0402 + 0.999i)T \) |
| 11 | \( 1 + (-0.919 - 0.391i)T \) |
| 17 | \( 1 + (-0.354 + 0.935i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.919 + 0.391i)T \) |
| 31 | \( 1 + (0.428 - 0.903i)T \) |
| 37 | \( 1 + (0.568 + 0.822i)T \) |
| 41 | \( 1 + (0.948 + 0.316i)T \) |
| 43 | \( 1 + (0.428 + 0.903i)T \) |
| 47 | \( 1 + (0.278 - 0.960i)T \) |
| 53 | \( 1 + (0.987 - 0.160i)T \) |
| 59 | \( 1 + (0.885 - 0.464i)T \) |
| 61 | \( 1 + (-0.632 + 0.774i)T \) |
| 67 | \( 1 + (0.278 - 0.960i)T \) |
| 71 | \( 1 + (-0.200 - 0.979i)T \) |
| 73 | \( 1 + (0.799 - 0.600i)T \) |
| 79 | \( 1 + (0.278 - 0.960i)T \) |
| 83 | \( 1 + (-0.748 - 0.663i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.845 + 0.534i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.23469081505796566249727938415, −21.02413633411744512372352284221, −20.13977919872775717619862824820, −19.03545643452123085375855300815, −18.03766002042858084419111228534, −17.297318835368593076037863012256, −16.69030141805398604597907452213, −15.93729893883148345155138698401, −15.56010740688289830206418631030, −14.67014855980204832550695790032, −13.844583662725816295846391458832, −12.90845078170457359051917181820, −12.31200088823763792890130565474, −11.162537854699069542741338712479, −10.1499605554521715190927603386, −9.37491952539178110473448795082, −8.78351687449071884395847787768, −7.95209250074024002458482634572, −7.04833324735133868178783087386, −5.74269119349522325415082790728, −5.32552097746927010258882175058, −4.49566816834016739957738715624, −3.877281909896166517378986552309, −2.57152874625051771902571083417, −0.71349482013942193887261078147,
0.62132478923087634700660927972, 1.96881980611789955163143555704, 2.61592470761607583145548953982, 3.37824756121148182332096949002, 4.612090712322693597684679500418, 5.69229282501095379471584090653, 6.39763427043224415180128885625, 7.458274478118281727997395017169, 8.21963757701229739525660426162, 9.13213362492189085933153740330, 10.29911488427961964699726383587, 11.04347914210886364505808437814, 11.3341218062529757676613762193, 12.44492587254639766301834427294, 13.31257614319011697080260530586, 13.47581634793826330574217945126, 14.74961819691799090567064696660, 15.138639052391271066778892468202, 16.68973751989504770821769435777, 17.55468546612592406429188815527, 18.14846157832247828925501969648, 18.83245499794513693702966760851, 19.30157567205410039338498474372, 20.0143419105633016707485393933, 21.0859655539679566662119084821